DeepSeek API 调用 - Spring Boot 实现

DeepSeek API 调用 - Spring Boot 实现

1. 项目依赖

pom.xml 中添加以下依赖:

复制代码
<dependencies>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-webflux</artifactId>
    </dependency>
    <dependency>
        <groupId>org.projectlombok</groupId>
        <artifactId>lombok</artifactId>
    </dependency>
    <dependency>
        <groupId>com.fasterxml.jackson.core</groupId>
        <artifactId>jackson-databind</artifactId>
    </dependency>
</dependencies>
2. 项目结构
复制代码
deepseek-project/
├── src/main/java/com/example/deepseek/
│   ├── DeepSeekApplication.java
│   ├── config/
│   │   └── DeepSeekConfig.java
│   ├── model/
│   │   ├── ChatRequest.java
│   │   ├── ChatResponse.java
│   │   └── Message.java
│   └── service/
│       └── DeepSeekService.java
└── conversation.txt
3. 完整代码实现
3.1 配置类 DeepSeekConfig.java
复制代码
package com.example.deepseek.config;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Configuration;

@Configuration
@Getter
public class DeepSeekConfig {
    @Value("${deepseek.api.url}")
    private String apiUrl;

    @Value("${deepseek.api.key}")
    private String apiKey;
}
3.2 请求/响应模型

Message.java:

复制代码
package com.example.deepseek.model;

import lombok.Data;

@Data
public class Message {
    private String role;
    private String content;
}

ChatRequest.java:

复制代码
package com.example.deepseek.model;

import lombok.Data;
import java.util.List;

@Data
public class ChatRequest {
    private String model = "deepseek-ai/DeepSeek-V3";
    private List<Message> messages;
    private boolean stream = true;
    private int max_tokens = 2048;
    private double temperature = 0.7;
    private double top_p = 0.7;
    private int top_k = 50;
    private double frequency_penalty = 0.5;
    private int n = 1;
    private ResponseFormat response_format = new ResponseFormat("text");

    @Data
    public static class ResponseFormat {
        private String type;
        
        public ResponseFormat(String type) {
            this.type = type;
        }
    }
}

ChatResponse.java:

复制代码
package com.example.deepseek.model;

import lombok.Data;
import java.util.List;

@Data
public class ChatResponse {
    private List<Choice> choices;

    @Data
    public static class Choice {
        private Delta delta;
    }

    @Data
    public static class Delta {
        private String content;
    }
}
3.3 服务类 DeepSeekService.java
复制代码
package com.example.deepseek.service;

import com.example.deepseek.config.DeepSeekConfig;
import com.example.deepseek.model.ChatRequest;
import com.example.deepseek.model.ChatResponse;
import com.example.deepseek.model.Message;
import com.fasterxml.jackson.databind.ObjectMapper;
import lombok.RequiredArgsConstructor;
import org.springframework.stereotype.Service;
import org.springframework.web.reactive.function.client.WebClient;
import reactor.core.publisher.Flux;

import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
import java.util.Collections;
import java.util.Scanner;

@Service
@RequiredArgsConstructor
public class DeepSeekService {
    private final DeepSeekConfig config;
    private final WebClient.Builder webClientBuilder;
    private final ObjectMapper objectMapper = new ObjectMapper();

    public void startInteractiveChat() {
        try (Scanner scanner = new Scanner(System.in);
             PrintWriter fileWriter = new PrintWriter(new FileWriter("conversation.txt", true))) {

            while (true) {
                System.out.print("
请输入您的问题 (输入 q 退出): ");
                String question = scanner.nextLine().trim();

                if ("q".equalsIgnoreCase(question)) {
                    System.out.println("程序已退出");
                    break;
                }

                // 保存问题
                saveToFile(fileWriter, question, true);

                // 发起对话请求
                Flux<String> responseFlux = sendChatRequest(question);

                StringBuilder fullResponse = new StringBuilder();
                responseFlux
                    .doOnNext(chunk -> {
                        System.out.print(chunk);
                        fullResponse.append(chunk);
                    })
                    .doOnComplete(() -> {
                        // 保存完整回复
                        saveToFile(fileWriter, fullResponse.toString(), false);
                        System.out.println("
----------------------------------------");
                        fileWriter.println("
----------------------------------------");
                        fileWriter.flush();
                    })
                    .blockLast();
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    private Flux<String> sendChatRequest(String question) {
        ChatRequest request = new ChatRequest();
        Message userMessage = new Message();
        userMessage.setRole("user");
        userMessage.setContent(question);
        request.setMessages(Collections.singletonList(userMessage));

        return webClientBuilder.build()
            .post()
            .uri(config.getApiUrl())
            .header("Authorization", "Bearer " + config.getApiKey())
            .header("Content-Type", "application/json")
            .bodyValue(request)
            .retrieve()
            .bodyToFlux(String.class)
            .filter(line -> line.startsWith("data: ") && !line.equals("data: [DONE]"))
            .map(line -> {
                try {
                    String jsonStr = line.substring(6);
                    ChatResponse response = objectMapper.readValue(jsonStr, ChatResponse.class);
                    return response.getChoices().get(0).getDelta().getContent();
                } catch (Exception e) {
                    return "";
                }
            })
            .filter(content -> !content.isEmpty());
    }

    private void saveToFile(PrintWriter fileWriter, String content, boolean isQuestion) {
        String timestamp = LocalDateTime.now().format(DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss"));
        if (isQuestion) {
            fileWriter.printf("
[%s] Question:
%s

[%s] Answer:
", timestamp, content, timestamp);
        } else {
            fileWriter.print(content);
        }
        fileWriter.flush();
    }
}
3.4 主应用类 DeepSeekApplication.java
复制代码
package com.example.deepseek;

import com.example.deepseek.service.DeepSeekService;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.ConfigurableApplicationContext;

@SpringBootApplication
public class DeepSeekApplication {
    public static void main(String[] args) {
        ConfigurableApplicationContext context = SpringApplication.run(DeepSeekApplication.class, args);
        DeepSeekService deepSeekService = context.getBean(DeepSeekService.class);
        deepSeekService.startInteractiveChat();
    }
}
3.5 配置文件 application.properties
复制代码
deepseek.api.url=https://api.siliconflow.cn/v1/chat/completions
deepseek.api.key=YOUR_API_KEY
4. 代码详解
4.1 关键特性
  1. 使用 Spring WebFlux 的响应式编程模型
  2. 流式处理 API 响应
  3. 文件记录对话
  4. 错误处理和异常管理
4.2 主要组件
  • DeepSeekConfig: 管理 API 配置
  • DeepSeekService: 处理对话逻辑和 API 交互
  • 模型类: 定义请求和响应结构
5. 使用方法
  1. 替换 application.properties 中的 YOUR_API_KEY
  2. 运行 DeepSeekApplication
  3. 在控制台输入问题
  4. 输入 'q' 退出程序
  5. 查看 conversation.txt 获取对话记录
6. 性能和可扩展性
  • 使用响应式编程提高并发性能
  • 灵活的配置管理
  • 易于扩展和定制
7. 注意事项
  • 确保正确配置 API Key
  • 处理网络异常
  • 注意内存使用
总结

Spring Boot 实现提供了一个健壮、可扩展的 DeepSeek API 调用方案,利用响应式编程提供高效的流式对话体验。

立即体验

快来体验 DeepSeek:https://cloud.siliconflow.cn/i/vnCCfVaQ

相关推荐
long3167 分钟前
Aho-Corasick 模式搜索算法
java·数据结构·spring boot·后端·算法·排序算法
独断万古他化17 分钟前
【SSM开发实战:博客系统】(三)核心业务功能开发与安全加密实现
spring boot·spring·mybatis·博客系统·加密
rannn_11134 分钟前
【苍穹外卖|Day4】套餐页面开发(新增套餐、分页查询、删除套餐、修改套餐、起售停售)
java·spring boot·后端·学习
qq_124987075338 分钟前
基于JavaWeb的大学生房屋租赁系统(源码+论文+部署+安装)
java·数据库·人工智能·spring boot·计算机视觉·毕业设计·计算机毕业设计
短剑重铸之日44 分钟前
《设计模式》第十一篇:总结
java·后端·设计模式·总结
梦帮科技1 小时前
OpenClaw 桥接调用 Windows MCP:打造你的 AI 桌面自动化助手
人工智能·windows·自动化
倒流时光三十年1 小时前
SpringBoot 数据库同步 Elasticsearch 性能优化
数据库·spring boot·elasticsearch
码农小卡拉2 小时前
深入解析Spring Boot文件加载顺序与加载方式
java·数据库·spring boot
Dragon Wu2 小时前
Spring Security Oauth2.1 授权码模式实现前后端分离的方案
java·spring boot·后端·spring cloud·springboot·springcloud
一个有梦有戏的人2 小时前
Python3基础:进阶基础,筑牢编程底层能力
后端·python