【Chrono库】 时区转换规则(TransitionRule)实现详解(src/offset/local/tz_info/rule.rs)

核心数据结构

1. TransitionRule 枚举

表示时区转换规则,有两种类型:

rust 复制代码
pub(super) enum TransitionRule {
    Fixed(LocalTimeType),      // 固定时区(无夏令时)
    Alternate(AlternateTime),  // 交替时区(有夏令时)
}

2. AlternateTime 结构体

表示包含夏令时的交替时区规则:

rust 复制代码
pub(super) struct AlternateTime {
    pub(super) std: LocalTimeType,     // 标准时间类型
    pub(super) dst: LocalTimeType,     // 夏令时时间类型
    dst_start: RuleDay,                // 夏令时开始日规则
    dst_start_time: i32,               // 夏令时开始时间(秒)
    dst_end: RuleDay,                  // 夏令时结束日规则
    dst_end_time: i32,                 // 夏令时结束时间(秒)
}

3. RuleDay 枚举

定义夏令时转换日期的三种表示方式:

rust 复制代码
enum RuleDay {
    // 儒略日 [1,365],不考虑闰年的2月29日
    Julian1WithoutLeap(u16),
    // 儒略日 [0,365],考虑闰年的2月29日
    Julian0WithLeap(u16),
    // 月-周-星期表示法
    MonthWeekday {
        month: u8,      // 月份 [1,12]
        week: u8,       // 第几周 [1,5],5表示最后一周
        week_day: u8,   // 星期几 [0,6],0=周日
    },
}

POSIX TZ字符串解析

1. TZ字符串格式

POSIX TZ字符串的几种格式:

rust 复制代码
// 格式1: 固定时区
"EST5"                    // 东五区,无夏令时
"HST10"                   // 西十区,无夏令时

// 格式2: 完整夏令时时区
"EST5EDT"                // 东五区,默认夏令时规则
"EST5EDT,M3.2.0,M11.1.0" // 完整夏令时规则

// 格式3: 带偏移量
"IST-1GMT0"              // 西一区标准时间,UTC夏令时
"<-03>3<-02>"            // 带名称的时区

2. 解析流程

from_tz_string() 方法的解析逻辑:

rust 复制代码
pub(super) fn from_tz_string(
    tz_string: &[u8],
    use_string_extensions: bool,
) -> Result<Self, Error> {
    let mut cursor = Cursor::new(tz_string);
    
    // 1. 解析标准时区名称
    let std_time_zone = Some(parse_name(&mut cursor)?);
    
    // 2. 解析标准时区偏移
    let std_offset = parse_offset(&mut cursor)?;
    
    // 3. 如果是固定时区
    if cursor.is_empty() {
        return Ok(LocalTimeType::new(-std_offset, false, std_time_zone)?.into());
    }
    
    // 4. 解析夏令时时区名称
    let dst_time_zone = Some(parse_name(&mut cursor)?);
    
    // 5. 解析夏令时偏移(可省略,默认为标准偏移-1小时)
    let dst_offset = match cursor.peek() {
        Some(&b',') => std_offset - 3600,  // 默认偏移
        Some(_) => parse_offset(&mut cursor)?,
        None => return Err(Error::UnsupportedTzString(...)),
    };
    
    // 6. 解析夏令时开始规则
    cursor.read_tag(b",")?;
    let (dst_start, dst_start_time) = RuleDay::parse(&mut cursor, use_string_extensions)?;
    
    // 7. 解析夏令时结束规则
    cursor.read_tag(b",")?;
    let (dst_end, dst_end_time) = RuleDay::parse(&mut cursor, use_string_extensions)?;
    
    // 8. 构建AlternateTime
    Ok(AlternateTime::new(...)?.into())
}

3. 时间解析函数

rust 复制代码
// 解析时区偏移量(格式: [+-]HH[:MM[:SS]])
fn parse_offset(cursor: &mut Cursor) -> Result<i32, Error>

// 解析转换时间(格式: HH[:MM[:SS]])
fn parse_rule_time(cursor: &mut Cursor) -> Result<i32, Error>

// 解析扩展转换时间(格式: [+-]HH[:MM[:SS]])
fn parse_rule_time_extended(cursor: &mut Cursor) -> Result<i32, Error>

RuleDay 的实现

1. 日期规则解析

rust 复制代码
impl RuleDay {
    fn parse(cursor: &mut Cursor, use_string_extensions: bool) -> Result<(Self, i32), Error> {
        match cursor.peek() {
            Some(b'M') => {  // 月-周-星期格式: Mmonth.week.weekday
                cursor.read_exact(1)?;
                let month = cursor.read_int()?;
                cursor.read_tag(b".")?;
                let week = cursor.read_int()?;
                cursor.read_tag(b".")?;
                let week_day = cursor.read_int()?;
                RuleDay::month_weekday(month, week, week_day)?
            }
            Some(b'J') => {  // 儒略日格式(不含2月29日): Jday
                cursor.read_exact(1)?;
                RuleDay::julian_1(cursor.read_int()?)?
            }
            _ => {  // 儒略日格式(含2月29日): day
                RuleDay::julian_0(cursor.read_int()?)?
            }
        }
    }
}

2. 计算转换日期

rust 复制代码
fn transition_date(&self, year: i32) -> (usize, i64) {
    match *self {
        RuleDay::Julian1WithoutLeap(year_day) => {
            // 不考虑闰年,直接计算
            let month = match CUMUL_DAY_IN_MONTHS_NORMAL_YEAR.binary_search(&(year_day - 1)) {
                Ok(x) => x + 1,
                Err(x) => x,
            };
            (month, year_day - CUMUL_DAY_IN_MONTHS_NORMAL_YEAR[month - 1])
        }
        RuleDay::Julian0WithLeap(year_day) => {
            // 考虑闰年,动态计算累计天数
            let leap = is_leap_year(year) as i64;
            let cumul_day_in_months = [
                0, 31, 59 + leap, 90 + leap, // ... 各月累计天数
            ];
            // 类似方法计算月份和日期
        }
        RuleDay::MonthWeekday { month, week, week_day } => {
            // 计算指定月份的指定星期几的第几周
            // 1. 计算当月第一天是星期几
            // 2. 计算目标星期几的第一次出现
            // 3. 加上(week-1)周
            // 4. 如果超出当月天数,退回一周
        }
    }
}

夏令时判断算法

1. 核心算法逻辑

AlternateTime::find_local_time_type() 方法:

rust 复制代码
fn find_local_time_type(&self, unix_time: i64) -> Result<&LocalTimeType, Error> {
    // 计算当前年份
    let current_year = UtcDateTime::from_timespec(unix_time)?.year;
    
    // 计算夏令时开始/结束的UTC时间
    let dst_start_utc = self.dst_start_time as i64 - self.std.ut_offset as i64;
    let dst_end_utc = self.dst_end_time as i64 - self.dst.ut_offset as i64;
    
    // 计算当前年份的转换时间
    let current_year_dst_start = self.dst_start.unix_time(current_year, dst_start_utc);
    let current_year_dst_end = self.dst_end.unix_time(current_year, dst_end_utc);
    
    // 根据开始/结束时间的关系,分两种情况处理
    match current_year_dst_start.cmp(&current_year_dst_end) {
        Ordering::Less | Ordering::Equal => {
            // 情况1: 开始时间 ≤ 结束时间(北半球常规模式)
            // 检查前一年、当前年、下一年的转换时间
        }
        Ordering::Greater => {
            // 情况2: 开始时间 > 结束时间(南半球模式)
            // 反向检查时间范围
        }
    }
}

2. 时间范围检查逻辑

对于北半球模式(开始时间 ≤ 结束时间):

rust 复制代码
if unix_time < current_year_dst_start {
    // 在当前年开始时间之前
    let prev_year_dst_end = self.dst_end.unix_time(current_year - 1, dst_end_utc);
    if unix_time < prev_year_dst_end {
        // 检查是否在前一年的夏令时期间
        let prev_year_dst_start = self.dst_start.unix_time(current_year - 1, dst_start_utc);
        prev_year_dst_start <= unix_time  // 是夏令时
    } else {
        false  // 不是夏令时
    }
} else if unix_time < current_year_dst_end {
    true  // 在夏令时期间
} else {
    // 在当前年结束时间之后
    let next_year_dst_start = self.dst_start.unix_time(current_year + 1, dst_start_utc);
    if next_year_dst_start <= unix_time {
        // 检查是否在下一年的夏令时期间
        let next_year_dst_end = self.dst_end.unix_time(current_year + 1, dst_end_utc);
        unix_time < next_year_dst_end  // 是夏令时
    } else {
        false  // 不是夏令时
    }
}

本地时间查找算法

1. 处理模糊时间

find_local_time_type_from_local() 方法处理四种情况:

rust 复制代码
fn find_local_time_type_from_local(
    &self,
    local_time: NaiveDateTime,
) -> Result<MappedLocalTime<LocalTimeType>, Error> {
    match self.std.ut_offset.cmp(&self.dst.ut_offset) {
        Ordering::Equal => {
            // 情况1: 偏移相同,没有真正转换
            MappedLocalTime::Single(self.std)
        }
        Ordering::Less => {
            // 情况2: 夏令时偏移更大(时钟向前跳)
            if dst_start < dst_end {
                // 北半球: 春季向前跳,秋季向后跳
                self.handle_northern_hemisphere(...)
            } else {
                // 南半球: 相反的季节
                self.handle_southern_hemisphere(...)
            }
        }
        Ordering::Greater => {
            // 情况3: 夏令时偏移更小(反向夏令时)
            if dst_start < dst_end {
                // 南半球反向模式
                self.handle_southern_reverse(...)
            } else {
                // 北半球反向模式
                self.handle_northern_reverse(...)
            }
        }
    }
}

2. 北半球常规模式处理

rust 复制代码
// dst_start < dst_end 且 std.offset < dst.offset
if local_time <= dst_start_transition_start {
    // 转换开始前:标准时间
    MappedLocalTime::Single(self.std)
} else if local_time > dst_start_transition_start 
        && local_time < dst_start_transition_end {
    // 转换期间:不存在的时间(向前跳)
    MappedLocalTime::None
} else if local_time >= dst_start_transition_end 
        && local_time < dst_end_transition_end {
    // 夏令时期间:夏令时
    MappedLocalTime::Single(self.dst)
} else if local_time >= dst_end_transition_end 
        && local_time <= dst_end_transition_start {
    // 转换结束期间:模糊时间(向后跳)
    MappedLocalTime::Ambiguous(self.std, self.dst)
} else {
    // 转换结束后:标准时间
    MappedLocalTime::Single(self.std)
}

3. 时间计算

转换时间的计算:

rust 复制代码
// 夏令时开始转换:
// 开始:标准时间的本地时间
dst_start_transition_start = dst_start.unix_time(year, 0) + dst_start_time
// 结束:夏令时的本地时间(考虑了偏移变化)
dst_start_transition_end = dst_start_transition_start + dst.offset - std.offset

// 夏令时结束转换:
// 开始:夏令时的本地时间
dst_end_transition_start = dst_end.unix_time(year, 0) + dst_end_time
// 结束:标准时间的本地时间
dst_end_transition_end = dst_end_transition_start + std.offset - dst.offset

时间日期转换工具

1. UtcDateTime 结构体

用于在Unix时间和日期时间之间转换:

rust 复制代码
pub(crate) struct UtcDateTime {
    pub(crate) year: i32,
    pub(crate) month: u8,       // 1-12
    pub(crate) month_day: u8,   // 1-31
    pub(crate) hour: u8,        // 0-23
    pub(crate) minute: u8,      // 0-59
    pub(crate) second: u8,      // 0-60(包含闰秒)
}

2. Unix时间转日期算法

from_timespec() 方法使用优化算法:

rust 复制代码
pub(crate) fn from_timespec(unix_time: i64) -> Result<Self, Error> {
    // 1. 转换为自2000-03-01以来的秒数
    let seconds = unix_time - UNIX_OFFSET_SECS;
    
    // 2. 计算天数
    let mut days = seconds / SECONDS_PER_DAY;
    let mut secs = seconds % SECONDS_PER_DAY;
    
    // 3. 按400年周期分组计算
    let cycles_400 = days / DAYS_PER_400_YEARS;      // 400年周期数
    days %= DAYS_PER_400_YEARS;
    
    let cycles_100 = days / DAYS_PER_100_YEARS;      // 100年周期数(最多3)
    days -= cycles_100 * DAYS_PER_100_YEARS;
    
    let cycles_4 = days / DAYS_PER_4_YEARS;          // 4年周期数(最多24)
    days -= cycles_4 * DAYS_PER_4_YEARS;
    
    let years = days / DAYS_PER_NORMAL_YEAR;         // 剩余年数(最多3)
    days -= years * DAYS_PER_NORMAL_YEAR;
    
    // 4. 计算年份
    let year = 2000 + years + cycles_4 * 4 + cycles_100 * 100 + cycles_400 * 400;
    
    // 5. 计算月份(从3月开始,简化闰年处理)
    let mut month = 0;
    while month < DAY_IN_MONTHS_LEAP_YEAR_FROM_MARCH.len() {
        if days < DAY_IN_MONTHS_LEAP_YEAR_FROM_MARCH[month] {
            break;
        }
        days -= DAY_IN_MONTHS_LEAP_YEAR_FROM_MARCH[month];
        month += 1;
    }
    
    // 6. 调整月份(从3月转回1月起始)
    month += 2;
    if month >= 12 {
        month -= 12;
        year += 1;
    }
    month += 1;
    
    // 7. 计算日、时、分、秒
    let month_day = 1 + days;
    let hour = secs / 3600;
    let minute = (secs / 60) % 60;
    let second = secs % 60;
    
    Ok(UtcDateTime { ... })
}

辅助函数

1. 天数计算

rust 复制代码
// 计算自Unix纪元以来的天数
const fn days_since_unix_epoch(year: i32, month: usize, month_day: i64) -> i64 {
    let is_leap = is_leap_year(year);
    let year = year as i64;
    
    let mut days = (year - 1970) * 365;
    
    if year >= 1970 {
        // 1970年后的闰年处理
        days += (year - 1968) / 4;
        days -= (year - 1900) / 100;
        days += (year - 1600) / 400;
        if is_leap && month < 3 {
            days -= 1;
        }
    } else {
        // 1970年前的闰年处理
        days += (year - 1972) / 4;
        days -= (year - 2000) / 100;
        days += (year - 2000) / 400;
        if is_leap && month >= 3 {
            days += 1;
        }
    }
    
    days + CUMUL_DAY_IN_MONTHS_NORMAL_YEAR[month - 1] + month_day - 1
}

// 闰年判断
const fn is_leap_year(year: i32) -> bool {
    year % 400 == 0 || (year % 4 == 0 && year % 100 != 0)
}

使用示例

1. 解析TZ字符串

rust 复制代码
// 固定时区
let fixed = TransitionRule::from_tz_string(b"EST5", false)?;
// AlternateTime { std: EST(-18000), dst: 同std }

// 完整夏令时时区
let dst = TransitionRule::from_tz_string(
    b"EST5EDT,M3.2.0,M11.1.0", 
    false
)?;
// AlternateTime { std: EST(-18000), dst: EDT(-14400), ... }

// 带引号的时区名称
let quoted = TransitionRule::from_tz_string(
    b"<-03>3<-02>,M3.5.0,M10.5.0", 
    true
)?;

2. 时间查找

rust 复制代码
// 创建转换规则
let rule = TransitionRule::from_tz_string(
    b"EST5EDT,M3.2.0/02:00,M11.1.0/02:00",
    false
)?;

// 查找特定时间的时区类型
let winter_time = rule.find_local_time_type(1609459200)?;  // 2021-01-01: 标准时间
let summer_time = rule.find_local_time_type(1625097600)?;  // 2021-07-01: 夏令时

// 处理本地时间(考虑模糊时间)
let ambiguous_time = NaiveDateTime::from_ymd(2023, 11, 5)
    .and_hms(1, 30, 0);
    
match rule.find_local_time_type_from_local(ambiguous_time)? {
    MappedLocalTime::Single(t) => println!("Unique: {:?}", t),
    MappedLocalTime::Ambiguous(t1, t2) => {
        println!("Ambiguous: {:?} or {:?}", t1, t2);
    }
    MappedLocalTime::None => println!("Time does not exist"),
}

关键特性

1. 扩展支持

  • 标准POSIX TZ字符串:基本格式支持
  • RFC 8536扩展:支持负时间、超过24小时的时间
  • 引号时区名称 :支持<Name>格式

2. 健壮性处理

  • 闰年处理:正确识别2月29日
  • 溢出检查:防止整数溢出
  • 边界情况:处理跨年转换

3. 性能优化

  • 二分查找:快速定位月份
  • 预计算常量:减少运行时计算
  • 避免浮点数:全部使用整数运算

这个实现提供了完整的POSIX TZ字符串解析和时区转换功能,能够正确处理各种夏令时规则和边界情况。

附源码

rust 复制代码
use super::parser::Cursor;
use super::timezone::{LocalTimeType, SECONDS_PER_WEEK};
use super::{
    CUMUL_DAY_IN_MONTHS_NORMAL_YEAR, DAY_IN_MONTHS_NORMAL_YEAR, DAYS_PER_WEEK, Error,
    SECONDS_PER_DAY,
};
use crate::{Datelike, NaiveDateTime};
use std::cmp::Ordering;

/// Transition rule
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub(super) enum TransitionRule {
    /// Fixed local time type
    Fixed(LocalTimeType),
    /// Alternate local time types
    Alternate(AlternateTime),
}

impl TransitionRule {
    /// Parse a POSIX TZ string containing a time zone description, as described in [the POSIX documentation of the `TZ` environment variable](https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html).
    ///
    /// TZ string extensions from [RFC 8536](https://datatracker.ietf.org/doc/html/rfc8536#section-3.3.1) may be used.
    pub(super) fn from_tz_string(
        tz_string: &[u8],
        use_string_extensions: bool,
    ) -> Result<Self, Error> {
        let mut cursor = Cursor::new(tz_string);

        let std_time_zone = Some(parse_name(&mut cursor)?);
        let std_offset = parse_offset(&mut cursor)?;

        if cursor.is_empty() {
            return Ok(LocalTimeType::new(-std_offset, false, std_time_zone)?.into());
        }

        let dst_time_zone = Some(parse_name(&mut cursor)?);

        let dst_offset = match cursor.peek() {
            Some(&b',') => std_offset - 3600,
            Some(_) => parse_offset(&mut cursor)?,
            None => {
                return Err(Error::UnsupportedTzString("DST start and end rules must be provided"));
            }
        };

        if cursor.is_empty() {
            return Err(Error::UnsupportedTzString("DST start and end rules must be provided"));
        }

        cursor.read_tag(b",")?;
        let (dst_start, dst_start_time) = RuleDay::parse(&mut cursor, use_string_extensions)?;

        cursor.read_tag(b",")?;
        let (dst_end, dst_end_time) = RuleDay::parse(&mut cursor, use_string_extensions)?;

        if !cursor.is_empty() {
            return Err(Error::InvalidTzString("remaining data after parsing TZ string"));
        }

        Ok(AlternateTime::new(
            LocalTimeType::new(-std_offset, false, std_time_zone)?,
            LocalTimeType::new(-dst_offset, true, dst_time_zone)?,
            dst_start,
            dst_start_time,
            dst_end,
            dst_end_time,
        )?
        .into())
    }

    /// Find the local time type associated to the transition rule at the specified Unix time in seconds
    pub(super) fn find_local_time_type(&self, unix_time: i64) -> Result<&LocalTimeType, Error> {
        match self {
            TransitionRule::Fixed(local_time_type) => Ok(local_time_type),
            TransitionRule::Alternate(alternate_time) => {
                alternate_time.find_local_time_type(unix_time)
            }
        }
    }

    /// Find the local time type associated to the transition rule at the specified Unix time in seconds
    pub(super) fn find_local_time_type_from_local(
        &self,
        local_time: NaiveDateTime,
    ) -> Result<crate::MappedLocalTime<LocalTimeType>, Error> {
        match self {
            TransitionRule::Fixed(local_time_type) => {
                Ok(crate::MappedLocalTime::Single(*local_time_type))
            }
            TransitionRule::Alternate(alternate_time) => {
                alternate_time.find_local_time_type_from_local(local_time)
            }
        }
    }
}

impl From<LocalTimeType> for TransitionRule {
    fn from(inner: LocalTimeType) -> Self {
        TransitionRule::Fixed(inner)
    }
}

impl From<AlternateTime> for TransitionRule {
    fn from(inner: AlternateTime) -> Self {
        TransitionRule::Alternate(inner)
    }
}

/// Transition rule representing alternate local time types
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub(super) struct AlternateTime {
    /// Local time type for standard time
    pub(super) std: LocalTimeType,
    /// Local time type for Daylight Saving Time
    pub(super) dst: LocalTimeType,
    /// Start day of Daylight Saving Time
    dst_start: RuleDay,
    /// Local start day time of Daylight Saving Time, in seconds
    dst_start_time: i32,
    /// End day of Daylight Saving Time
    dst_end: RuleDay,
    /// Local end day time of Daylight Saving Time, in seconds
    dst_end_time: i32,
}

impl AlternateTime {
    /// Construct a transition rule representing alternate local time types
    const fn new(
        std: LocalTimeType,
        dst: LocalTimeType,
        dst_start: RuleDay,
        dst_start_time: i32,
        dst_end: RuleDay,
        dst_end_time: i32,
    ) -> Result<Self, Error> {
        // Overflow is not possible
        if !((dst_start_time as i64).abs() < SECONDS_PER_WEEK
            && (dst_end_time as i64).abs() < SECONDS_PER_WEEK)
        {
            return Err(Error::TransitionRule("invalid DST start or end time"));
        }

        Ok(Self { std, dst, dst_start, dst_start_time, dst_end, dst_end_time })
    }

    /// Find the local time type associated to the alternate transition rule at the specified Unix time in seconds
    fn find_local_time_type(&self, unix_time: i64) -> Result<&LocalTimeType, Error> {
        // Overflow is not possible
        let dst_start_time_in_utc = self.dst_start_time as i64 - self.std.ut_offset as i64;
        let dst_end_time_in_utc = self.dst_end_time as i64 - self.dst.ut_offset as i64;

        let current_year = match UtcDateTime::from_timespec(unix_time) {
            Ok(dt) => dt.year,
            Err(error) => return Err(error),
        };

        // Check if the current year is valid for the following computations
        if !(i32::MIN + 2..=i32::MAX - 2).contains(&current_year) {
            return Err(Error::OutOfRange("out of range date time"));
        }

        let current_year_dst_start_unix_time =
            self.dst_start.unix_time(current_year, dst_start_time_in_utc);
        let current_year_dst_end_unix_time =
            self.dst_end.unix_time(current_year, dst_end_time_in_utc);

        // Check DST start/end Unix times for previous/current/next years to support for transition day times outside of [0h, 24h] range
        let is_dst =
            match Ord::cmp(&current_year_dst_start_unix_time, &current_year_dst_end_unix_time) {
                Ordering::Less | Ordering::Equal => {
                    if unix_time < current_year_dst_start_unix_time {
                        let previous_year_dst_end_unix_time =
                            self.dst_end.unix_time(current_year - 1, dst_end_time_in_utc);
                        if unix_time < previous_year_dst_end_unix_time {
                            let previous_year_dst_start_unix_time =
                                self.dst_start.unix_time(current_year - 1, dst_start_time_in_utc);
                            previous_year_dst_start_unix_time <= unix_time
                        } else {
                            false
                        }
                    } else if unix_time < current_year_dst_end_unix_time {
                        true
                    } else {
                        let next_year_dst_start_unix_time =
                            self.dst_start.unix_time(current_year + 1, dst_start_time_in_utc);
                        if next_year_dst_start_unix_time <= unix_time {
                            let next_year_dst_end_unix_time =
                                self.dst_end.unix_time(current_year + 1, dst_end_time_in_utc);
                            unix_time < next_year_dst_end_unix_time
                        } else {
                            false
                        }
                    }
                }
                Ordering::Greater => {
                    if unix_time < current_year_dst_end_unix_time {
                        let previous_year_dst_start_unix_time =
                            self.dst_start.unix_time(current_year - 1, dst_start_time_in_utc);
                        if unix_time < previous_year_dst_start_unix_time {
                            let previous_year_dst_end_unix_time =
                                self.dst_end.unix_time(current_year - 1, dst_end_time_in_utc);
                            unix_time < previous_year_dst_end_unix_time
                        } else {
                            true
                        }
                    } else if unix_time < current_year_dst_start_unix_time {
                        false
                    } else {
                        let next_year_dst_end_unix_time =
                            self.dst_end.unix_time(current_year + 1, dst_end_time_in_utc);
                        if next_year_dst_end_unix_time <= unix_time {
                            let next_year_dst_start_unix_time =
                                self.dst_start.unix_time(current_year + 1, dst_start_time_in_utc);
                            next_year_dst_start_unix_time <= unix_time
                        } else {
                            true
                        }
                    }
                }
            };

        if is_dst { Ok(&self.dst) } else { Ok(&self.std) }
    }

    fn find_local_time_type_from_local(
        &self,
        local_time: NaiveDateTime,
    ) -> Result<crate::MappedLocalTime<LocalTimeType>, Error> {
        // Year must be between i32::MIN + 2 and i32::MAX - 2, year in NaiveDate is always smaller.
        let current_year = local_time.year();
        let local_time = local_time.and_utc().timestamp();

        let dst_start_transition_start =
            self.dst_start.unix_time(current_year, 0) + i64::from(self.dst_start_time);
        let dst_start_transition_end = self.dst_start.unix_time(current_year, 0)
            + i64::from(self.dst_start_time)
            + i64::from(self.dst.ut_offset)
            - i64::from(self.std.ut_offset);

        let dst_end_transition_start =
            self.dst_end.unix_time(current_year, 0) + i64::from(self.dst_end_time);
        let dst_end_transition_end = self.dst_end.unix_time(current_year, 0)
            + i64::from(self.dst_end_time)
            + i64::from(self.std.ut_offset)
            - i64::from(self.dst.ut_offset);

        match self.std.ut_offset.cmp(&self.dst.ut_offset) {
            Ordering::Equal => Ok(crate::MappedLocalTime::Single(self.std)),
            Ordering::Less => {
                if self.dst_start.transition_date(current_year).0
                    < self.dst_end.transition_date(current_year).0
                {
                    // northern hemisphere
                    // For the DST END transition, the `start` happens at a later timestamp than the `end`.
                    if local_time <= dst_start_transition_start {
                        Ok(crate::MappedLocalTime::Single(self.std))
                    } else if local_time > dst_start_transition_start
                        && local_time < dst_start_transition_end
                    {
                        Ok(crate::MappedLocalTime::None)
                    } else if local_time >= dst_start_transition_end
                        && local_time < dst_end_transition_end
                    {
                        Ok(crate::MappedLocalTime::Single(self.dst))
                    } else if local_time >= dst_end_transition_end
                        && local_time <= dst_end_transition_start
                    {
                        Ok(crate::MappedLocalTime::Ambiguous(self.std, self.dst))
                    } else {
                        Ok(crate::MappedLocalTime::Single(self.std))
                    }
                } else {
                    // southern hemisphere regular DST
                    // For the DST END transition, the `start` happens at a later timestamp than the `end`.
                    if local_time < dst_end_transition_end {
                        Ok(crate::MappedLocalTime::Single(self.dst))
                    } else if local_time >= dst_end_transition_end
                        && local_time <= dst_end_transition_start
                    {
                        Ok(crate::MappedLocalTime::Ambiguous(self.std, self.dst))
                    } else if local_time > dst_end_transition_end
                        && local_time < dst_start_transition_start
                    {
                        Ok(crate::MappedLocalTime::Single(self.std))
                    } else if local_time >= dst_start_transition_start
                        && local_time < dst_start_transition_end
                    {
                        Ok(crate::MappedLocalTime::None)
                    } else {
                        Ok(crate::MappedLocalTime::Single(self.dst))
                    }
                }
            }
            Ordering::Greater => {
                if self.dst_start.transition_date(current_year).0
                    < self.dst_end.transition_date(current_year).0
                {
                    // southern hemisphere reverse DST
                    // For the DST END transition, the `start` happens at a later timestamp than the `end`.
                    if local_time < dst_start_transition_end {
                        Ok(crate::MappedLocalTime::Single(self.std))
                    } else if local_time >= dst_start_transition_end
                        && local_time <= dst_start_transition_start
                    {
                        Ok(crate::MappedLocalTime::Ambiguous(self.dst, self.std))
                    } else if local_time > dst_start_transition_start
                        && local_time < dst_end_transition_start
                    {
                        Ok(crate::MappedLocalTime::Single(self.dst))
                    } else if local_time >= dst_end_transition_start
                        && local_time < dst_end_transition_end
                    {
                        Ok(crate::MappedLocalTime::None)
                    } else {
                        Ok(crate::MappedLocalTime::Single(self.std))
                    }
                } else {
                    // northern hemisphere reverse DST
                    // For the DST END transition, the `start` happens at a later timestamp than the `end`.
                    if local_time <= dst_end_transition_start {
                        Ok(crate::MappedLocalTime::Single(self.dst))
                    } else if local_time > dst_end_transition_start
                        && local_time < dst_end_transition_end
                    {
                        Ok(crate::MappedLocalTime::None)
                    } else if local_time >= dst_end_transition_end
                        && local_time < dst_start_transition_end
                    {
                        Ok(crate::MappedLocalTime::Single(self.std))
                    } else if local_time >= dst_start_transition_end
                        && local_time <= dst_start_transition_start
                    {
                        Ok(crate::MappedLocalTime::Ambiguous(self.dst, self.std))
                    } else {
                        Ok(crate::MappedLocalTime::Single(self.dst))
                    }
                }
            }
        }
    }
}

/// Parse time zone name
fn parse_name<'a>(cursor: &mut Cursor<'a>) -> Result<&'a [u8], Error> {
    match cursor.peek() {
        Some(b'<') => {}
        _ => return Ok(cursor.read_while(u8::is_ascii_alphabetic)?),
    }

    cursor.read_exact(1)?;
    let unquoted = cursor.read_until(|&x| x == b'>')?;
    cursor.read_exact(1)?;
    Ok(unquoted)
}

/// Parse time zone offset
fn parse_offset(cursor: &mut Cursor) -> Result<i32, Error> {
    let (sign, hour, minute, second) = parse_signed_hhmmss(cursor)?;

    if !(0..=24).contains(&hour) {
        return Err(Error::InvalidTzString("invalid offset hour"));
    }
    if !(0..=59).contains(&minute) {
        return Err(Error::InvalidTzString("invalid offset minute"));
    }
    if !(0..=59).contains(&second) {
        return Err(Error::InvalidTzString("invalid offset second"));
    }

    Ok(sign * (hour * 3600 + minute * 60 + second))
}

/// Parse transition rule time
fn parse_rule_time(cursor: &mut Cursor) -> Result<i32, Error> {
    let (hour, minute, second) = parse_hhmmss(cursor)?;

    if !(0..=24).contains(&hour) {
        return Err(Error::InvalidTzString("invalid day time hour"));
    }
    if !(0..=59).contains(&minute) {
        return Err(Error::InvalidTzString("invalid day time minute"));
    }
    if !(0..=59).contains(&second) {
        return Err(Error::InvalidTzString("invalid day time second"));
    }

    Ok(hour * 3600 + minute * 60 + second)
}

/// Parse transition rule time with TZ string extensions
fn parse_rule_time_extended(cursor: &mut Cursor) -> Result<i32, Error> {
    let (sign, hour, minute, second) = parse_signed_hhmmss(cursor)?;

    if !(-167..=167).contains(&hour) {
        return Err(Error::InvalidTzString("invalid day time hour"));
    }
    if !(0..=59).contains(&minute) {
        return Err(Error::InvalidTzString("invalid day time minute"));
    }
    if !(0..=59).contains(&second) {
        return Err(Error::InvalidTzString("invalid day time second"));
    }

    Ok(sign * (hour * 3600 + minute * 60 + second))
}

/// Parse hours, minutes and seconds
fn parse_hhmmss(cursor: &mut Cursor) -> Result<(i32, i32, i32), Error> {
    let hour = cursor.read_int()?;

    let mut minute = 0;
    let mut second = 0;

    if cursor.read_optional_tag(b":")? {
        minute = cursor.read_int()?;

        if cursor.read_optional_tag(b":")? {
            second = cursor.read_int()?;
        }
    }

    Ok((hour, minute, second))
}

/// Parse signed hours, minutes and seconds
fn parse_signed_hhmmss(cursor: &mut Cursor) -> Result<(i32, i32, i32, i32), Error> {
    let mut sign = 1;
    if let Some(&c) = cursor.peek() {
        if c == b'+' || c == b'-' {
            cursor.read_exact(1)?;
            if c == b'-' {
                sign = -1;
            }
        }
    }

    let (hour, minute, second) = parse_hhmmss(cursor)?;
    Ok((sign, hour, minute, second))
}

/// Transition rule day
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
enum RuleDay {
    /// Julian day in `[1, 365]`, without taking occasional Feb 29 into account, which is not referenceable
    Julian1WithoutLeap(u16),
    /// Zero-based Julian day in `[0, 365]`, taking occasional Feb 29 into account
    Julian0WithLeap(u16),
    /// Day represented by a month, a month week and a week day
    MonthWeekday {
        /// Month in `[1, 12]`
        month: u8,
        /// Week of the month in `[1, 5]`, with `5` representing the last week of the month
        week: u8,
        /// Day of the week in `[0, 6]` from Sunday
        week_day: u8,
    },
}

impl RuleDay {
    /// Parse transition rule
    fn parse(cursor: &mut Cursor, use_string_extensions: bool) -> Result<(Self, i32), Error> {
        let date = match cursor.peek() {
            Some(b'M') => {
                cursor.read_exact(1)?;
                let month = cursor.read_int()?;
                cursor.read_tag(b".")?;
                let week = cursor.read_int()?;
                cursor.read_tag(b".")?;
                let week_day = cursor.read_int()?;
                RuleDay::month_weekday(month, week, week_day)?
            }
            Some(b'J') => {
                cursor.read_exact(1)?;
                RuleDay::julian_1(cursor.read_int()?)?
            }
            _ => RuleDay::julian_0(cursor.read_int()?)?,
        };

        Ok((
            date,
            match (cursor.read_optional_tag(b"/")?, use_string_extensions) {
                (false, _) => 2 * 3600,
                (true, true) => parse_rule_time_extended(cursor)?,
                (true, false) => parse_rule_time(cursor)?,
            },
        ))
    }

    /// Construct a transition rule day represented by a Julian day in `[1, 365]`, without taking occasional Feb 29 into account, which is not referenceable
    fn julian_1(julian_day_1: u16) -> Result<Self, Error> {
        if !(1..=365).contains(&julian_day_1) {
            return Err(Error::TransitionRule("invalid rule day julian day"));
        }

        Ok(RuleDay::Julian1WithoutLeap(julian_day_1))
    }

    /// Construct a transition rule day represented by a zero-based Julian day in `[0, 365]`, taking occasional Feb 29 into account
    const fn julian_0(julian_day_0: u16) -> Result<Self, Error> {
        if julian_day_0 > 365 {
            return Err(Error::TransitionRule("invalid rule day julian day"));
        }

        Ok(RuleDay::Julian0WithLeap(julian_day_0))
    }

    /// Construct a transition rule day represented by a month, a month week and a week day
    fn month_weekday(month: u8, week: u8, week_day: u8) -> Result<Self, Error> {
        if !(1..=12).contains(&month) {
            return Err(Error::TransitionRule("invalid rule day month"));
        }

        if !(1..=5).contains(&week) {
            return Err(Error::TransitionRule("invalid rule day week"));
        }

        if week_day > 6 {
            return Err(Error::TransitionRule("invalid rule day week day"));
        }

        Ok(RuleDay::MonthWeekday { month, week, week_day })
    }

    /// Get the transition date for the provided year
    ///
    /// ## Outputs
    ///
    /// * `month`: Month in `[1, 12]`
    /// * `month_day`: Day of the month in `[1, 31]`
    fn transition_date(&self, year: i32) -> (usize, i64) {
        match *self {
            RuleDay::Julian1WithoutLeap(year_day) => {
                let year_day = year_day as i64;

                let month = match CUMUL_DAY_IN_MONTHS_NORMAL_YEAR.binary_search(&(year_day - 1)) {
                    Ok(x) => x + 1,
                    Err(x) => x,
                };

                let month_day = year_day - CUMUL_DAY_IN_MONTHS_NORMAL_YEAR[month - 1];

                (month, month_day)
            }
            RuleDay::Julian0WithLeap(year_day) => {
                let leap = is_leap_year(year) as i64;

                let cumul_day_in_months = [
                    0,
                    31,
                    59 + leap,
                    90 + leap,
                    120 + leap,
                    151 + leap,
                    181 + leap,
                    212 + leap,
                    243 + leap,
                    273 + leap,
                    304 + leap,
                    334 + leap,
                ];

                let year_day = year_day as i64;

                let month = match cumul_day_in_months.binary_search(&year_day) {
                    Ok(x) => x + 1,
                    Err(x) => x,
                };

                let month_day = 1 + year_day - cumul_day_in_months[month - 1];

                (month, month_day)
            }
            RuleDay::MonthWeekday { month: rule_month, week, week_day } => {
                let leap = is_leap_year(year) as i64;

                let month = rule_month as usize;

                let mut day_in_month = DAY_IN_MONTHS_NORMAL_YEAR[month - 1];
                if month == 2 {
                    day_in_month += leap;
                }

                let week_day_of_first_month_day =
                    (4 + days_since_unix_epoch(year, month, 1)).rem_euclid(DAYS_PER_WEEK);
                let first_week_day_occurrence_in_month =
                    1 + (week_day as i64 - week_day_of_first_month_day).rem_euclid(DAYS_PER_WEEK);

                let mut month_day =
                    first_week_day_occurrence_in_month + (week as i64 - 1) * DAYS_PER_WEEK;
                if month_day > day_in_month {
                    month_day -= DAYS_PER_WEEK
                }

                (month, month_day)
            }
        }
    }

    /// Returns the UTC Unix time in seconds associated to the transition date for the provided year
    fn unix_time(&self, year: i32, day_time_in_utc: i64) -> i64 {
        let (month, month_day) = self.transition_date(year);
        days_since_unix_epoch(year, month, month_day) * SECONDS_PER_DAY + day_time_in_utc
    }
}

/// UTC date time exprimed in the [proleptic gregorian calendar](https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar)
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
pub(crate) struct UtcDateTime {
    /// Year
    pub(crate) year: i32,
    /// Month in `[1, 12]`
    pub(crate) month: u8,
    /// Day of the month in `[1, 31]`
    pub(crate) month_day: u8,
    /// Hours since midnight in `[0, 23]`
    pub(crate) hour: u8,
    /// Minutes in `[0, 59]`
    pub(crate) minute: u8,
    /// Seconds in `[0, 60]`, with a possible leap second
    pub(crate) second: u8,
}

impl UtcDateTime {
    /// Construct a UTC date time from a Unix time in seconds and nanoseconds
    pub(crate) fn from_timespec(unix_time: i64) -> Result<Self, Error> {
        let seconds = match unix_time.checked_sub(UNIX_OFFSET_SECS) {
            Some(seconds) => seconds,
            None => return Err(Error::OutOfRange("out of range operation")),
        };

        let mut remaining_days = seconds / SECONDS_PER_DAY;
        let mut remaining_seconds = seconds % SECONDS_PER_DAY;
        if remaining_seconds < 0 {
            remaining_seconds += SECONDS_PER_DAY;
            remaining_days -= 1;
        }

        let mut cycles_400_years = remaining_days / DAYS_PER_400_YEARS;
        remaining_days %= DAYS_PER_400_YEARS;
        if remaining_days < 0 {
            remaining_days += DAYS_PER_400_YEARS;
            cycles_400_years -= 1;
        }

        let cycles_100_years = Ord::min(remaining_days / DAYS_PER_100_YEARS, 3);
        remaining_days -= cycles_100_years * DAYS_PER_100_YEARS;

        let cycles_4_years = Ord::min(remaining_days / DAYS_PER_4_YEARS, 24);
        remaining_days -= cycles_4_years * DAYS_PER_4_YEARS;

        let remaining_years = Ord::min(remaining_days / DAYS_PER_NORMAL_YEAR, 3);
        remaining_days -= remaining_years * DAYS_PER_NORMAL_YEAR;

        let mut year = OFFSET_YEAR
            + remaining_years
            + cycles_4_years * 4
            + cycles_100_years * 100
            + cycles_400_years * 400;

        let mut month = 0;
        while month < DAY_IN_MONTHS_LEAP_YEAR_FROM_MARCH.len() {
            let days = DAY_IN_MONTHS_LEAP_YEAR_FROM_MARCH[month];
            if remaining_days < days {
                break;
            }
            remaining_days -= days;
            month += 1;
        }
        month += 2;

        if month >= MONTHS_PER_YEAR as usize {
            month -= MONTHS_PER_YEAR as usize;
            year += 1;
        }
        month += 1;

        let month_day = 1 + remaining_days;

        let hour = remaining_seconds / SECONDS_PER_HOUR;
        let minute = (remaining_seconds / SECONDS_PER_MINUTE) % MINUTES_PER_HOUR;
        let second = remaining_seconds % SECONDS_PER_MINUTE;

        let year = match year >= i32::MIN as i64 && year <= i32::MAX as i64 {
            true => year as i32,
            false => return Err(Error::OutOfRange("i64 is out of range for i32")),
        };

        Ok(Self {
            year,
            month: month as u8,
            month_day: month_day as u8,
            hour: hour as u8,
            minute: minute as u8,
            second: second as u8,
        })
    }
}

/// Number of nanoseconds in one second
const NANOSECONDS_PER_SECOND: u32 = 1_000_000_000;
/// Number of seconds in one minute
const SECONDS_PER_MINUTE: i64 = 60;
/// Number of seconds in one hour
const SECONDS_PER_HOUR: i64 = 3600;
/// Number of minutes in one hour
const MINUTES_PER_HOUR: i64 = 60;
/// Number of months in one year
const MONTHS_PER_YEAR: i64 = 12;
/// Number of days in a normal year
const DAYS_PER_NORMAL_YEAR: i64 = 365;
/// Number of days in 4 years (including 1 leap year)
const DAYS_PER_4_YEARS: i64 = DAYS_PER_NORMAL_YEAR * 4 + 1;
/// Number of days in 100 years (including 24 leap years)
const DAYS_PER_100_YEARS: i64 = DAYS_PER_NORMAL_YEAR * 100 + 24;
/// Number of days in 400 years (including 97 leap years)
const DAYS_PER_400_YEARS: i64 = DAYS_PER_NORMAL_YEAR * 400 + 97;
/// Unix time at `2000-03-01T00:00:00Z` (Wednesday)
const UNIX_OFFSET_SECS: i64 = 951868800;
/// Offset year
const OFFSET_YEAR: i64 = 2000;
/// Month days in a leap year from March
const DAY_IN_MONTHS_LEAP_YEAR_FROM_MARCH: [i64; 12] =
    [31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 29];

/// Compute the number of days since Unix epoch (`1970-01-01T00:00:00Z`).
///
/// ## Inputs
///
/// * `year`: Year
/// * `month`: Month in `[1, 12]`
/// * `month_day`: Day of the month in `[1, 31]`
pub(crate) const fn days_since_unix_epoch(year: i32, month: usize, month_day: i64) -> i64 {
    let is_leap_year = is_leap_year(year);

    let year = year as i64;

    let mut result = (year - 1970) * 365;

    if year >= 1970 {
        result += (year - 1968) / 4;
        result -= (year - 1900) / 100;
        result += (year - 1600) / 400;

        if is_leap_year && month < 3 {
            result -= 1;
        }
    } else {
        result += (year - 1972) / 4;
        result -= (year - 2000) / 100;
        result += (year - 2000) / 400;

        if is_leap_year && month >= 3 {
            result += 1;
        }
    }

    result += CUMUL_DAY_IN_MONTHS_NORMAL_YEAR[month - 1] + month_day - 1;

    result
}

/// Check if a year is a leap year
pub(crate) const fn is_leap_year(year: i32) -> bool {
    year % 400 == 0 || (year % 4 == 0 && year % 100 != 0)
}

#[cfg(test)]
mod tests {
    use super::super::timezone::Transition;
    use super::super::{Error, TimeZone};
    use super::{AlternateTime, LocalTimeType, RuleDay, TransitionRule};

    #[test]
    fn test_quoted() -> Result<(), Error> {
        let transition_rule = TransitionRule::from_tz_string(b"<-03>+3<+03>-3,J1,J365", false)?;
        assert_eq!(
            transition_rule,
            AlternateTime::new(
                LocalTimeType::new(-10800, false, Some(b"-03"))?,
                LocalTimeType::new(10800, true, Some(b"+03"))?,
                RuleDay::julian_1(1)?,
                7200,
                RuleDay::julian_1(365)?,
                7200,
            )?
            .into()
        );
        Ok(())
    }

    #[test]
    fn test_full() -> Result<(), Error> {
        let tz_string = b"NZST-12:00:00NZDT-13:00:00,M10.1.0/02:00:00,M3.3.0/02:00:00";
        let transition_rule = TransitionRule::from_tz_string(tz_string, false)?;
        assert_eq!(
            transition_rule,
            AlternateTime::new(
                LocalTimeType::new(43200, false, Some(b"NZST"))?,
                LocalTimeType::new(46800, true, Some(b"NZDT"))?,
                RuleDay::month_weekday(10, 1, 0)?,
                7200,
                RuleDay::month_weekday(3, 3, 0)?,
                7200,
            )?
            .into()
        );
        Ok(())
    }

    #[test]
    fn test_negative_dst() -> Result<(), Error> {
        let tz_string = b"IST-1GMT0,M10.5.0,M3.5.0/1";
        let transition_rule = TransitionRule::from_tz_string(tz_string, false)?;
        assert_eq!(
            transition_rule,
            AlternateTime::new(
                LocalTimeType::new(3600, false, Some(b"IST"))?,
                LocalTimeType::new(0, true, Some(b"GMT"))?,
                RuleDay::month_weekday(10, 5, 0)?,
                7200,
                RuleDay::month_weekday(3, 5, 0)?,
                3600,
            )?
            .into()
        );
        Ok(())
    }

    #[test]
    fn test_negative_hour() -> Result<(), Error> {
        let tz_string = b"<-03>3<-02>,M3.5.0/-2,M10.5.0/-1";
        assert!(TransitionRule::from_tz_string(tz_string, false).is_err());

        assert_eq!(
            TransitionRule::from_tz_string(tz_string, true)?,
            AlternateTime::new(
                LocalTimeType::new(-10800, false, Some(b"-03"))?,
                LocalTimeType::new(-7200, true, Some(b"-02"))?,
                RuleDay::month_weekday(3, 5, 0)?,
                -7200,
                RuleDay::month_weekday(10, 5, 0)?,
                -3600,
            )?
            .into()
        );
        Ok(())
    }

    #[test]
    fn test_all_year_dst() -> Result<(), Error> {
        let tz_string = b"EST5EDT,0/0,J365/25";
        assert!(TransitionRule::from_tz_string(tz_string, false).is_err());

        assert_eq!(
            TransitionRule::from_tz_string(tz_string, true)?,
            AlternateTime::new(
                LocalTimeType::new(-18000, false, Some(b"EST"))?,
                LocalTimeType::new(-14400, true, Some(b"EDT"))?,
                RuleDay::julian_0(0)?,
                0,
                RuleDay::julian_1(365)?,
                90000,
            )?
            .into()
        );
        Ok(())
    }

    #[test]
    fn test_v3_file() -> Result<(), Error> {
        let bytes = b"TZif3\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x01\0\0\0\x04\0\0\x1c\x20\0\0IST\0TZif3\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x01\0\0\0\x01\0\0\0\0\0\0\0\x01\0\0\0\x01\0\0\0\x04\0\0\0\0\x7f\xe8\x17\x80\0\0\0\x1c\x20\0\0IST\0\x01\x01\x0aIST-2IDT,M3.4.4/26,M10.5.0\x0a";

        let time_zone = TimeZone::from_tz_data(bytes)?;

        let time_zone_result = TimeZone::new(
            vec![Transition::new(2145916800, 0)],
            vec![LocalTimeType::new(7200, false, Some(b"IST"))?],
            Vec::new(),
            Some(TransitionRule::from(AlternateTime::new(
                LocalTimeType::new(7200, false, Some(b"IST"))?,
                LocalTimeType::new(10800, true, Some(b"IDT"))?,
                RuleDay::month_weekday(3, 4, 4)?,
                93600,
                RuleDay::month_weekday(10, 5, 0)?,
                7200,
            )?)),
        )?;

        assert_eq!(time_zone, time_zone_result);

        Ok(())
    }

    #[test]
    fn test_rule_day() -> Result<(), Error> {
        let rule_day_j1 = RuleDay::julian_1(60)?;
        assert_eq!(rule_day_j1.transition_date(2000), (3, 1));
        assert_eq!(rule_day_j1.transition_date(2001), (3, 1));
        assert_eq!(rule_day_j1.unix_time(2000, 43200), 951912000);

        let rule_day_j0 = RuleDay::julian_0(59)?;
        assert_eq!(rule_day_j0.transition_date(2000), (2, 29));
        assert_eq!(rule_day_j0.transition_date(2001), (3, 1));
        assert_eq!(rule_day_j0.unix_time(2000, 43200), 951825600);

        let rule_day_mwd = RuleDay::month_weekday(2, 5, 2)?;
        assert_eq!(rule_day_mwd.transition_date(2000), (2, 29));
        assert_eq!(rule_day_mwd.transition_date(2001), (2, 27));
        assert_eq!(rule_day_mwd.unix_time(2000, 43200), 951825600);
        assert_eq!(rule_day_mwd.unix_time(2001, 43200), 983275200);

        Ok(())
    }

    #[test]
    fn test_transition_rule() -> Result<(), Error> {
        let transition_rule_fixed = TransitionRule::from(LocalTimeType::new(-36000, false, None)?);
        assert_eq!(transition_rule_fixed.find_local_time_type(0)?.offset(), -36000);

        let transition_rule_dst = TransitionRule::from(AlternateTime::new(
            LocalTimeType::new(43200, false, Some(b"NZST"))?,
            LocalTimeType::new(46800, true, Some(b"NZDT"))?,
            RuleDay::month_weekday(10, 1, 0)?,
            7200,
            RuleDay::month_weekday(3, 3, 0)?,
            7200,
        )?);

        assert_eq!(transition_rule_dst.find_local_time_type(953384399)?.offset(), 46800);
        assert_eq!(transition_rule_dst.find_local_time_type(953384400)?.offset(), 43200);
        assert_eq!(transition_rule_dst.find_local_time_type(970322399)?.offset(), 43200);
        assert_eq!(transition_rule_dst.find_local_time_type(970322400)?.offset(), 46800);

        let transition_rule_negative_dst = TransitionRule::from(AlternateTime::new(
            LocalTimeType::new(3600, false, Some(b"IST"))?,
            LocalTimeType::new(0, true, Some(b"GMT"))?,
            RuleDay::month_weekday(10, 5, 0)?,
            7200,
            RuleDay::month_weekday(3, 5, 0)?,
            3600,
        )?);

        assert_eq!(transition_rule_negative_dst.find_local_time_type(954032399)?.offset(), 0);
        assert_eq!(transition_rule_negative_dst.find_local_time_type(954032400)?.offset(), 3600);
        assert_eq!(transition_rule_negative_dst.find_local_time_type(972781199)?.offset(), 3600);
        assert_eq!(transition_rule_negative_dst.find_local_time_type(972781200)?.offset(), 0);

        let transition_rule_negative_time_1 = TransitionRule::from(AlternateTime::new(
            LocalTimeType::new(0, false, None)?,
            LocalTimeType::new(0, true, None)?,
            RuleDay::julian_0(100)?,
            0,
            RuleDay::julian_0(101)?,
            -86500,
        )?);

        assert!(transition_rule_negative_time_1.find_local_time_type(8639899)?.is_dst());
        assert!(!transition_rule_negative_time_1.find_local_time_type(8639900)?.is_dst());
        assert!(!transition_rule_negative_time_1.find_local_time_type(8639999)?.is_dst());
        assert!(transition_rule_negative_time_1.find_local_time_type(8640000)?.is_dst());

        let transition_rule_negative_time_2 = TransitionRule::from(AlternateTime::new(
            LocalTimeType::new(-10800, false, Some(b"-03"))?,
            LocalTimeType::new(-7200, true, Some(b"-02"))?,
            RuleDay::month_weekday(3, 5, 0)?,
            -7200,
            RuleDay::month_weekday(10, 5, 0)?,
            -3600,
        )?);

        assert_eq!(
            transition_rule_negative_time_2.find_local_time_type(954032399)?.offset(),
            -10800
        );
        assert_eq!(
            transition_rule_negative_time_2.find_local_time_type(954032400)?.offset(),
            -7200
        );
        assert_eq!(
            transition_rule_negative_time_2.find_local_time_type(972781199)?.offset(),
            -7200
        );
        assert_eq!(
            transition_rule_negative_time_2.find_local_time_type(972781200)?.offset(),
            -10800
        );

        let transition_rule_all_year_dst = TransitionRule::from(AlternateTime::new(
            LocalTimeType::new(-18000, false, Some(b"EST"))?,
            LocalTimeType::new(-14400, true, Some(b"EDT"))?,
            RuleDay::julian_0(0)?,
            0,
            RuleDay::julian_1(365)?,
            90000,
        )?);

        assert_eq!(transition_rule_all_year_dst.find_local_time_type(946702799)?.offset(), -14400);
        assert_eq!(transition_rule_all_year_dst.find_local_time_type(946702800)?.offset(), -14400);

        Ok(())
    }

    #[test]
    fn test_transition_rule_overflow() -> Result<(), Error> {
        let transition_rule_1 = TransitionRule::from(AlternateTime::new(
            LocalTimeType::new(-1, false, None)?,
            LocalTimeType::new(-1, true, None)?,
            RuleDay::julian_1(365)?,
            0,
            RuleDay::julian_1(1)?,
            0,
        )?);

        let transition_rule_2 = TransitionRule::from(AlternateTime::new(
            LocalTimeType::new(1, false, None)?,
            LocalTimeType::new(1, true, None)?,
            RuleDay::julian_1(365)?,
            0,
            RuleDay::julian_1(1)?,
            0,
        )?);

        let min_unix_time = -67768100567971200;
        let max_unix_time = 67767976233532799;

        assert!(matches!(
            transition_rule_1.find_local_time_type(min_unix_time),
            Err(Error::OutOfRange(_))
        ));
        assert!(matches!(
            transition_rule_2.find_local_time_type(max_unix_time),
            Err(Error::OutOfRange(_))
        ));

        Ok(())
    }
}
相关推荐
星释9 小时前
Rust 练习册 100:音乐音阶生成器
开发语言·后端·rust
木易 士心15 小时前
Go、Rust、Kotlin、Python 与 Java 从性能到生态,全面解读五大主流编程语言
java·golang·rust
badmonster016 小时前
AI ETL需要不同的原语:从构建CocoIndex中学到的Rust经验🦀
rust·aigc
Source.Liu19 小时前
【Chrono库】Chrono 本地时区模块解析(src/offset/local/mod.rs)
rust·time
干饭比赛第一名获得者19 小时前
🚀 终极指南:Mac M4 编译 Rust 至 Linux (AMD64)
后端·rust
未来之窗软件服务20 小时前
幽冥大陆(三十六)S18酒店门锁SDK rust语言——东方仙盟筑基期
开发语言·c++·rust·智能门锁·东方仙盟sdk·东方仙盟一体化
ALex_zry1 天前
C语言底层编程与Rust的现代演进:内存管理、系统调用与零成本抽象
c语言·算法·rust
ALex_zry1 天前
内核开发者的视角:C与Rust在系统编程中的哲学与实践
c语言·开发语言·rust
u***45161 天前
Windows安装Rust环境(详细教程)
开发语言·windows·rust