RabbitMQ是如何解决消息堆积问题的?

当生产者发送消息的速度超过了消费者处理消息的速度,就会导致队列中的消息堆积,直到队列存储消息到达上限。

解决消息堆积问题通常有这样几种方案。

一、消费者角度

①增加消费者数量,当消费者处理速度跟不上生产者发送消息的速度时,可以通过增加更多的消费者实例来并行处理消息,从而提升总体处理能力。

②优化消费者性能:提升单个消费者处理速度,分析消费者代码,提升代码效率、增加资源。

二、队列角度

①增加队列容量。

②设置消息过期时间。为消息设置有效期,过期的消息会自动从队列中清除或转发到其他队列,这样可以避免长期堆积无用消息。

③使用优先级队列,对于不同优先级的消息,可以配置优先级队列,确保高优先级的消息优先被处理,降低低优先级消息对系统造成的压力。

④使用死信交换机。对于无法立即处理或处理失败的消息,可以配置死信交换器和队列。当消息达到一定重试次数或者超过一定期限未被成功消费时,消息将被转发到死信队列中,后续可以单独处理这部分消息,避免阻塞正常的消息流。

⑤使用惰性队列。对于传统的队列来讲,如果没有开启消息持久化,所有接收到的消息都是放在内存里面的,这样性能会很好,但是也带来了一个问题,RabbitMQ 设置了一个内存预警值(内存存储的上限,默认是 40%),如果在消息堆积的情况下,很容易就到达这个预警值,此时,RabbitMQ 就会处于一个暂停状态,会阻止生产者投递消息进来,然后把内存中的一部分消息清理出来,刷出到磁盘中,这动作也叫 "page out" . 进而导致 mq 的并发能力,忽高忽低,性能不稳定(每次page out 都会比较耗时,停顿一段时间。而惰性队列,收到的消息会直接写入磁盘,而非内存,也因此很难触发 mq 的内存预警,几乎不会出现 page out 的情况。消费者消费惰性队列的消息,也需要先从磁盘中读取并加载到内存中. 实际上这也会使延迟稍微高一点,毕竟磁盘的性能和内存还是有很大差距的,但是也在可以接收到范围内。支持数百万的消息存储,这也是因为他是磁盘存储(空间非常大)

相关推荐
回家路上绕了弯1 天前
分布式事务SAGA模式详解:长事务与复杂流程的柔性事务方案
分布式·后端
Gofarlic_oms11 天前
集中式 vs 分布式许可:跨地域企业的管控架构选择
大数据·运维·人工智能·分布式·架构·数据挖掘·需求分析
Mr.朱鹏1 天前
超时订单处理方案实战指南【完整版】
java·spring boot·redis·spring·rabbitmq·rocketmq·订单
神秘面具男031 天前
ceph分布式存储
分布式·ceph
北亚数据恢复1 天前
VSAN分布式存储下非正常关机导致的虚拟机磁盘丢失如何恢复数据?
分布式·数据恢复·服务器数据恢复·北亚数据恢复·vsan数据恢复
Wang's Blog1 天前
RabbitMQ: 集群监控与高可用架构深度解析之状态检测、问题诊断
架构·rabbitmq
阎*水1 天前
Ceph 分布式存储完整实践指南
linux·运维·分布式·ceph
yours_Gabriel1 天前
【kafka】基本概念
分布式·中间件·kafka
柒.梧.1 天前
MyBatis一对一关联查询深度解析:大实体类、SQL99联表、分布式查询实践
分布式·mybatis
csdn_aspnet1 天前
使用 Windows 客户端的 RabbitMQ Messaging for .NET 8 Web API 第 2 部分
windows·rabbitmq·.netcore·.net8