AI图像修复(Image Inpainting)实战案例

AI图像修复技术概述

AI图像修复(Image Inpainting)是一种基于深度学习的计算机视觉技术,用于修复图像中缺失或损坏的区域。通过生成对抗网络(GAN)、扩散模型(Diffusion Models)等算法,AI能够根据上下文信息智能填充缺失部分,保持视觉连贯性。

实战案例:使用Stable Diffusion修复老照片

案例背景:一张老照片因年代久远出现局部破损,需修复人物面部缺失区域。

工具与数据准备

  • 工具:Stable Diffusion WebUI(搭配Inpainting功能)、Python 3.8+、OpenCV
  • 数据:破损的老照片(需标注掩膜标记缺失区域)

操作流程

  1. 预处理图像

    使用OpenCV加载图像并生成掩膜(Mask),标记需修复的区域。掩膜为二值图像,白色区域表示待修复部分。

    python 复制代码
    import cv2
    image = cv2.imread("old_photo.jpg")
    mask = cv2.imread("mask.png", 0)  # 单通道掩膜
  2. 配置Stable Diffusion参数

    在Stable Diffusion WebUI中选择"Inpaint"模式,上传图像和掩膜。关键参数:

    • 提示词(Prompt):描述修复内容(如"a man's face, high detail, vintage style")
    • 去噪强度(Denoising Strength):建议0.7-0.9以平衡生成质量与原图一致性
  3. 生成修复结果

    运行模型后,AI会根据周围像素生成填充内容。多次调整提示词和参数可优化效果。

进阶技巧:基于LaMa的局部修复

LaMa(Large Mask Inpainting)是专为大面积缺失设计的模型,适合修复背景或大块物体。

实现步骤

  • 安装LaMa库:

    bash 复制代码
    pip install lama-cleaner
  • 运行修复:

    python 复制代码
    from lama_cleaner import LamaCleaner
    cleaner = LamaCleaner()
    result = cleaner.inpaint("damaged_image.jpg", "mask.png")

注意事项

  • 边缘处理:修复区域边缘需与周围自然过渡,可尝试羽化掩膜边缘。
  • 伦理问题:避免用于伪造敏感内容,遵守法律法规。

效果评估指标

  • PSNR(峰值信噪比) :衡量修复区域与原图的像素级差异。

    \\text{PSNR} = 10 \\log_{10} \\left( \\frac{\\text{MAX}_I\^2}{\\text{MSE}} \\right)

  • LPIPS(感知相似度):评估视觉感知一致性,值越低越好。

通过结合工具选择与参数调优,AI图像修复可广泛应用于文物修复、影视后期等领域。

相关推荐
AI小怪兽13 小时前
RoLID-11K:面向小目标检测的行车记录仪路边垃圾数据集
人工智能·目标检测·计算机视觉
拉普拉斯妖10813 小时前
DAY41 简单CNN
人工智能·神经网络·cnn
予枫的编程笔记13 小时前
【Java进阶】掌握布隆过滤器,守住高并发系统的第一道防线
人工智能
过期的秋刀鱼!13 小时前
机器学习-过拟合&欠拟合问题
人工智能·机器学习
万事可爱^13 小时前
LangChain v1.0学习笔记(4)—— 核心组件Models
人工智能·笔记·学习·langchain·大模型
Frdbio13 小时前
环腺苷酸(cAMP)ELISA检测试剂盒
linux·人工智能·python
dazzle13 小时前
计算机视觉处理(OpenCV基础教学(二十二):霍夫变换技术详解)
人工智能·opencv·计算机视觉
狗狗学不会14 小时前
RK3588 极致性能:使用 Pybind11 封装 MPP 实现 Python 端 8 路视频硬件解码
人工智能·python·音视频
Aevget14 小时前
Kendo UI for jQuery 2025 Q4新版亮点 - AI 助手持续加持,主力开发更智能
人工智能·ui·jquery·界面控件·kendo ui
北京耐用通信14 小时前
耐达讯自动化CANopen转Profibus网关在矿山机械RFID读写器应用中的技术分析
人工智能·科技·物联网·自动化·信息与通信