-
安装依赖
pip install sentence-transformers openai
2.单文件 rag_mini.py
python
import os
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.chains.retrieval import create_retrieval_chain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import DirectoryLoader
from langchain_community.vectorstores import FAISS
from langchain_core.prompts import ChatPromptTemplate
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_openai import ChatOpenAI
# 1. 加载文档并切分成片段
loader = DirectoryLoader("docs", glob="**/*.txt") # 你的文档目录
raw_docs = loader.load()
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=20)
texts = splitter.split_documents(raw_docs)
# 2. 嵌入并构建向量索引(FAISS)
embedding_model_path = "BAAI/bge-small-zh-v1.5"
embeddings = HuggingFaceEmbeddings(
model_name=embedding_model_path,
model_kwargs={'device': 'cpu'}, # 如果有 GPU 可改为 'cuda'
encode_kwargs={'normalize_embeddings': True}
)
vectorstore = FAISS.from_documents(texts, embeddings)
# 3. 构建 Retriever
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 2})
# 4. LLM
llm = ChatOpenAI(
temperature=0,
model="glm-4.5",
openai_api_key=os.getenv("ZAI_API_KEY"),
openai_api_base="https://open.bigmodel.cn/api/paas/v4/"
)
# 5. Prompt + Combine Docs Chain
prompt = ChatPromptTemplate.from_template("""
你是一个问答助手,请基于以下上下文简要地使用纯文本回答用户问题:
<context>
{context}
</context>
问题: {input}
""")
combine_docs_chain = create_stuff_documents_chain(llm, prompt)
# 6. 创建 Retrieval Chain
chain = create_retrieval_chain(
retriever=retriever,
combine_docs_chain=combine_docs_chain
)
# 7. 调用
out = chain.invoke({"input": "阿玛兰妲·乌尔苏拉怎么样了?"})
print("context:", out["context"])
print("answer:", out["answer"])
- 文本

- 运行效果
