kafka输出报错

1,kakfa输出报错

java 复制代码
025-11-28 11:53:51 org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 4150.0 failed 1 times, most recent failure: Lost task 0.0 in stage 4150.0 (TID 60046, localhost, executor driver): org.apache.kafka.common.KafkaException: Cannot execute transactional method because we are in an error state
	at org.apache.kafka.clients.producer.internals.TransactionManager.maybeFailWithError(TransactionManager.java:1010)
	at org.apache.kafka.clients.producer.internals.TransactionManager.maybeAddPartition(TransactionManager.java:328)
	at org.apache.kafka.clients.producer.KafkaProducer.doSend(KafkaProducer.java:1061)
	at org.apache.kafka.clients.producer.KafkaProducer.send(KafkaProducer.java:962)
	at org.apache.spark.sql.kafka010.KafkaRowWriter.sendRow(KafkaWriteTask.scala:92)
	at org.apache.spark.sql.kafka010.KafkaWriteTask.execute(KafkaWriteTask.scala:47)
	at org.apache.spark.sql.kafka010.KafkaWriter$$anonfun$write$1$$anonfun$apply$1.apply$mcV$sp(KafkaWriter.scala:89)
	at org.apache.spark.sql.kafka010.KafkaWriter$$anonfun$write$1$$anonfun$apply$1.apply(KafkaWriter.scala:89)
	at org.apache.spark.sql.kafka010.KafkaWriter$$anonfun$write$1$$anonfun$apply$1.apply(KafkaWriter.scala:89)
	at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
	at org.apache.spark.sql.kafka010.KafkaWriter$$anonfun$write$1.apply(KafkaWriter.scala:89)
	at org.apache.spark.sql.kafka010.KafkaWriter$$anonfun$write$1.apply(KafkaWriter.scala:87)
	at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$28.apply(RDD.scala:980)
	at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$28.apply(RDD.scala:980)
	at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2101)
	at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2101)
	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
	at org.apache.spark.scheduler.Task.run(Task.scala:123)
	at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
	at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
	at java.lang.Thread.run(Thread.java:750)
	Suppressed: org.apache.kafka.common.errors.UnsupportedVersionException: The broker does not support INIT_PRODUCER_ID
Caused by: [CIRCULAR REFERENCE: org.apache.kafka.common.errors.UnsupportedVersionException: The broker does not support INIT_PRODUCER_ID]

2,报错分析,报错显示kafka不支持事务,查官网验证kafka2.8版本是支持事务的,kafka是2.13-2.8.0的版本

3,代码中实现设置不适用事务也不行,2.8的客户端中实现实例的时候默认就是事务

java 复制代码
 KafkaProducer(ProducerConfig config,
                  Serializer<K> keySerializer,
                  Serializer<V> valueSerializer,
                  ProducerMetadata metadata,
                  KafkaClient kafkaClient,
                  ProducerInterceptors<K, V> interceptors,
                  Time time) {
        try {
            this.producerConfig = config;
            this.time = time;

            String transactionalId = config.getString(ProducerConfig.TRANSACTIONAL_ID_CONFIG);

            this.clientId = config.getString(ProducerConfig.CLIENT_ID_CONFIG);

            LogContext logContext;
            if (transactionalId == null)
                logContext = new LogContext(String.format("[Producer clientId=%s] ", clientId));
            else
                logContext = new LogContext(String.format("[Producer clientId=%s, transactionalId=%s] ", clientId, transactionalId));
            log = logContext.logger(KafkaProducer.class);

中间会给transactionalId 设置值

4,最后追踪,我依赖中的scala是2.12版本替换后解决

相关推荐
smileSunshineMan4 分钟前
idea启动kafka源码
java·kafka·intellij-idea
利刃大大6 分钟前
【RabbitMQ】重试机制 && TTL && 死信队列
分布式·后端·消息队列·rabbitmq·队列
talle202116 分钟前
Hadoop分布式资源管理框架【Yarn】
大数据·hadoop·分布式
LDG_AGI41 分钟前
【机器学习】深度学习推荐系统(二十五): X 推荐算法特征系统详解:230+ 特征全解析
人工智能·分布式·深度学习·算法·机器学习·推荐算法
LDG_AGI1 小时前
【机器学习】深度学习推荐系统(二十八):X 推荐算法listwiseRescoring(同刷多样性降权)机制详解
人工智能·分布式·深度学习·算法·机器学习·推荐算法
我是一只小青蛙8881 小时前
分布式流量守卫者:Sentinel深度解析
分布式·sentinel
a程序小傲2 小时前
中国电网Java面试被问:Kafka Consumer的Rebalance机制和分区分配策略
java·服务器·开发语言·面试·职场和发展·kafka·github
BHXDML2 小时前
Java 常用中间件体系化解析——从单体到分布式,从“能跑”到“可控、可扩展、可演进”
java·分布式·中间件
Analyze_ing2 小时前
DolphinScheduler启动flink任务, 用Flink消费Kafka数据(linux)
大数据·flink·kafka
zhojiew2 小时前
Kafka Connect集成Apache Iceberg写入AWS Glue表
kafka·apache·aws