kafka输出报错

1,kakfa输出报错

java 复制代码
025-11-28 11:53:51 org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 4150.0 failed 1 times, most recent failure: Lost task 0.0 in stage 4150.0 (TID 60046, localhost, executor driver): org.apache.kafka.common.KafkaException: Cannot execute transactional method because we are in an error state
	at org.apache.kafka.clients.producer.internals.TransactionManager.maybeFailWithError(TransactionManager.java:1010)
	at org.apache.kafka.clients.producer.internals.TransactionManager.maybeAddPartition(TransactionManager.java:328)
	at org.apache.kafka.clients.producer.KafkaProducer.doSend(KafkaProducer.java:1061)
	at org.apache.kafka.clients.producer.KafkaProducer.send(KafkaProducer.java:962)
	at org.apache.spark.sql.kafka010.KafkaRowWriter.sendRow(KafkaWriteTask.scala:92)
	at org.apache.spark.sql.kafka010.KafkaWriteTask.execute(KafkaWriteTask.scala:47)
	at org.apache.spark.sql.kafka010.KafkaWriter$$anonfun$write$1$$anonfun$apply$1.apply$mcV$sp(KafkaWriter.scala:89)
	at org.apache.spark.sql.kafka010.KafkaWriter$$anonfun$write$1$$anonfun$apply$1.apply(KafkaWriter.scala:89)
	at org.apache.spark.sql.kafka010.KafkaWriter$$anonfun$write$1$$anonfun$apply$1.apply(KafkaWriter.scala:89)
	at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
	at org.apache.spark.sql.kafka010.KafkaWriter$$anonfun$write$1.apply(KafkaWriter.scala:89)
	at org.apache.spark.sql.kafka010.KafkaWriter$$anonfun$write$1.apply(KafkaWriter.scala:87)
	at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$28.apply(RDD.scala:980)
	at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$28.apply(RDD.scala:980)
	at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2101)
	at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2101)
	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
	at org.apache.spark.scheduler.Task.run(Task.scala:123)
	at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
	at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
	at java.lang.Thread.run(Thread.java:750)
	Suppressed: org.apache.kafka.common.errors.UnsupportedVersionException: The broker does not support INIT_PRODUCER_ID
Caused by: [CIRCULAR REFERENCE: org.apache.kafka.common.errors.UnsupportedVersionException: The broker does not support INIT_PRODUCER_ID]

2,报错分析,报错显示kafka不支持事务,查官网验证kafka2.8版本是支持事务的,kafka是2.13-2.8.0的版本

3,代码中实现设置不适用事务也不行,2.8的客户端中实现实例的时候默认就是事务

java 复制代码
 KafkaProducer(ProducerConfig config,
                  Serializer<K> keySerializer,
                  Serializer<V> valueSerializer,
                  ProducerMetadata metadata,
                  KafkaClient kafkaClient,
                  ProducerInterceptors<K, V> interceptors,
                  Time time) {
        try {
            this.producerConfig = config;
            this.time = time;

            String transactionalId = config.getString(ProducerConfig.TRANSACTIONAL_ID_CONFIG);

            this.clientId = config.getString(ProducerConfig.CLIENT_ID_CONFIG);

            LogContext logContext;
            if (transactionalId == null)
                logContext = new LogContext(String.format("[Producer clientId=%s] ", clientId));
            else
                logContext = new LogContext(String.format("[Producer clientId=%s, transactionalId=%s] ", clientId, transactionalId));
            log = logContext.logger(KafkaProducer.class);

中间会给transactionalId 设置值

4,最后追踪,我依赖中的scala是2.12版本替换后解决

相关推荐
難釋懷1 天前
分布式锁的原子性问题
分布式
ai_xiaogui1 天前
【开源前瞻】从“咸鱼”到“超级个体”:谈谈 Panelai 分布式子服务器管理系统的设计架构与 UI 演进
服务器·分布式·架构·分布式架构·panelai·开源面板·ai工具开发
凯子坚持 c1 天前
如何基于 CANN 原生能力,构建一个支持 QoS 感知的 LLM 推理调度器
分布式
飞升不如收破烂~1 天前
Redis 分布式锁+接口幂等性使用+当下流行的限流方案「落地实操」+用户连续点击两下按钮的解决方案自用总结
数据库·redis·分布式
无心水1 天前
分布式定时任务与SELECT FOR UPDATE:从致命陷阱到优雅解决方案(实战案例+架构演进)
服务器·人工智能·分布式·后端·spring·架构·wpf
Lansonli1 天前
大数据Spark(八十):Action行动算子fold和aggregate使用案例
大数据·分布式·spark
闻哥1 天前
Kafka高吞吐量核心揭秘:四大技术架构深度解析
java·jvm·面试·kafka·rabbitmq·springboot
invicinble1 天前
对于分布式的原子能力
分布式
心态还需努力呀2 天前
CANN仓库通信库:分布式训练的梯度压缩技术
分布式·cann