MATLAB雷达系统设计与仿真
一、雷达系统概述
雷达(Radio Detection and Ranging)是一种利用电磁波探测目标的电子设备。本仿真系统实现了完整的雷达信号处理链,包括发射机、传播信道、目标模型、接收机和信号处理模块。
二、系统架构
发射机 → 传播信道 → 目标模型 → 接收机 → 信号处理 → 目标检测
三、MATLAB实现代码
1. 雷达系统主程序
matlab
classdef RadarSystem < handle
properties
% 雷达参数
freq = 10e9; % 载频 10 GHz (X波段)
bandwidth = 10e6; % 带宽 10 MHz
pulseWidth = 1e-6; % 脉宽 1 μs
prf = 10e3; % 脉冲重复频率 10 kHz
pulseNum = 128; % 脉冲数
txPower = 1e3; % 发射功率 1 kW
antennaGain = 30; % 天线增益 30 dB
noiseFigure = 3; % 噪声系数 3 dB
% 目标参数
targetRange = 10e3; % 目标距离 10 km
targetVelocity = 100; % 目标速度 100 m/s
targetRCS = 1; % 目标RCS 1 m²
% 环境参数
propLossExp = 2; % 路径损耗指数
clutterType = 'none'; % 杂波类型
% 信号处理参数
fftSize = 1024; % FFT点数
window = 'hamming'; % 加窗类型
end
methods
function obj = RadarSystem()
% 构造函数
end
function [txSignal, time] = generateTransmitSignal(obj)
% 生成发射信号 (LFM脉冲)
fs = 2 * obj.bandwidth; % 采样率
t = 0:1/fs:obj.pulseWidth-1/fs;
chirpRate = obj.bandwidth / obj.pulseWidth;
txSignal = exp(1j*pi*chirpRate*t.^2);
time = t;
end
function rxSignal = simulatePropagation(obj, txSignal, time)
% 模拟信号传播过程
c = 3e8; % 光速
% 计算目标延迟
delay = 2 * obj.targetRange / c;
delaySamples = round(delay * length(time)/max(time));
% 计算多普勒频移
dopplerFreq = 2 * obj.targetVelocity / c * obj.freq;
% 生成回波信号
rxSignal = zeros(size(txSignal));
echo = txSignal .* exp(1j*2*pi*dopplerFreq*time);
% 添加延迟
if delaySamples < length(rxSignal)
rxSignal(delaySamples+1:end) = echo(1:end-delaySamples);
end
% 添加路径损耗
rangeLoss = (obj.targetRange)^(-obj.propLossExp);
rxSignal = rxSignal * sqrt(rangeLoss);
% 添加目标RCS影响
rxSignal = rxSignal * sqrt(obj.targetRCS);
% 添加热噪声
k = 1.38e-23; % 玻尔兹曼常数
T0 = 290; % 标准温度
noisePower = k * T0 * obj.noiseFigure * fs;
noise = sqrt(noisePower/2) * (randn(size(rxSignal)) + 1j*randn(size(rxSignal)));
rxSignal = rxSignal + noise;
end
function mfOutput = matchedFilter(obj, rxSignal, txSignal)
% 匹配滤波处理
n = length(txSignal);
txConj = conj(fliplr(txSignal));
mfOutput = conv(rxSignal, txConj, 'same');
end
function [rangeProfile, rangeAxis] = rangeCompression(obj, mfOutput)
% 距离压缩处理
c = 3e8;
fs = 2 * obj.bandwidth;
maxRange = c/(2*fs); % 最大无模糊距离
rangeAxis = linspace(0, maxRange, length(mfOutput));
rangeProfile = abs(mfOutput);
end
function [dopplerProfile, velocityAxis] = dopplerProcessing(obj, pulses)
% 多普勒处理 (MTI + MTD)
c = 3e8;
lambda = c/obj.freq;
% 脉冲压缩后的数据立方体 [快时间×慢时间]
compressedPulses = zeros(size(pulses,1), size(pulses,2));
for i = 1:size(pulses,2)
compressedPulses(:,i) = abs(obj.matchedFilter(pulses(:,i), obj.generateTransmitSignal()));
end
% 加窗处理
win = window(@hamming, size(compressedPulses,1));
compressedPulses = compressedPulses .* win;
% 多普勒FFT
dopplerFFT = fftshift(fft(compressedPulses, obj.fftSize, 1), 1);
dopplerProfile = abs(dopplerFFT);
% 速度轴
velocityRes = lambda * obj.prf / (2 * obj.fftSize);
velocityAxis = (-obj.fftSize/2:obj.fftSize/2-1) * velocityRes;
end
function [detectionMap, rangeAxis, velocityAxis] = detectTargets(obj)
% 完整的目标检测流程
% 1. 生成发射信号
[txSignal, time] = obj.generateTransmitSignal();
% 2. 模拟多个脉冲
pulses = zeros(length(txSignal), obj.pulseNum);
for i = 1:obj.pulseNum
% 更新目标位置 (假设匀速直线运动)
obj.targetRange = obj.targetRange - obj.targetVelocity * (i-1)/obj.prf;
obj.targetVelocity = obj.targetVelocity; % 假设速度不变
% 生成回波
rxSignal = obj.simulatePropagation(txSignal, time);
pulses(:,i) = rxSignal;
end
% 3. 多普勒处理
[dopplerProfile, velocityAxis] = obj.dopplerProcessing(pulses);
% 4. 距离处理
[rangeProfile, rangeAxis] = obj.rangeCompression(mean(pulses,2));
% 5. CFAR检测 (恒虚警率检测)
detectionMap = obj.cfarDetection(dopplerProfile);
% 6. 显示结果
obj.displayResults(rangeProfile, dopplerProfile, detectionMap, rangeAxis, velocityAxis);
end
function detectionMap = cfarDetection(obj, data)
% 恒虚警率检测 (CA-CFAR)
guardCells = 4; % 保护单元数
trainCells = 8; % 参考单元数
pfa = 1e-6; % 虚警概率
[rows, cols] = size(data);
detectionMap = false(rows, cols);
% 计算阈值因子
alpha = trainCells * (pfa^(-1/trainCells) - 1);
for i = 1:rows
for j = 1:cols
% 确定参考窗口
leftStart = max(1, j-trainCells-guardCells);
leftEnd = j-guardCells-1;
rightStart = j+guardCells+1;
rightEnd = min(cols, j+trainCells+guardCells);
% 收集参考单元
refCells = [];
if leftStart <= leftEnd
refCells = [refCells, data(i, leftStart:leftEnd)];
end
if rightStart <= rightEnd
refCells = [refCells, data(i, rightStart:rightEnd)];
end
% 计算噪声功率估计
noisePower = mean(refCells.^2);
% 计算检测门限
threshold = alpha * noisePower;
% 检测判决
if data(i,j)^2 > threshold
detectionMap(i,j) = true;
end
end
end
end
function displayResults(obj, rangeProfile, dopplerProfile, detectionMap, rangeAxis, velocityAxis)
% 显示处理结果
figure('Name', '雷达系统仿真结果', 'Position', [100, 100, 1200, 800]);
% 距离剖面
subplot(2,2,1);
plot(rangeAxis/1e3, 20*log10(rangeProfile/max(rangeProfile)));
xlabel('距离 (km)');
ylabel('幅度 (dB)');
title('距离剖面');
grid on;
% 多普勒剖面
subplot(2,2,2);
imagesc(velocityAxis, rangeAxis/1e3, 20*log10(dopplerProfile/max(dopplerProfile(:))));
xlabel('速度 (m/s)');
ylabel('距离 (km)');
title('距离-多普勒图');
colorbar;
axis xy;
% CFAR检测结果
subplot(2,2,3);
imagesc(velocityAxis, rangeAxis/1e3, double(detectionMap));
xlabel('速度 (m/s)');
ylabel('距离 (km)');
title('CFAR检测结果');
colormap(gray);
axis xy;
% 雷达参数显示
subplot(2,2,4);
text(0.1, 0.9, sprintf('雷达参数'), 'FontSize', 12, 'FontWeight', 'bold');
text(0.1, 0.7, sprintf('载频: %.2f GHz', obj.freq/1e9));
text(0.1, 0.6, sprintf('带宽: %.2f MHz', obj.bandwidth/1e6));
text(0.1, 0.5, sprintf('脉宽: %.2f μs', obj.pulseWidth*1e6));
text(0.1, 0.4, sprintf('PRF: %.2f kHz', obj.prf/1e3));
text(0.1, 0.3, sprintf('脉冲数: %d', obj.pulseNum));
text(0.1, 0.2, sprintf('目标距离: %.2f km', obj.targetRange/1e3));
text(0.1, 0.1, sprintf('目标速度: %.2f m/s', obj.targetVelocity));
axis off;
end
end
end
2. 雷达波形生成与处理
matlab
% 线性调频(LFM)信号生成
function [lfm_signal, t] = generate_lfm(fc, bw, T, fs)
c = 3e8; % 光速
t = 0:1/fs:T-1/fs;
k = bw/T; % 调频斜率
lfm_signal = exp(1j*2*pi*(fc*t + 0.5*k*t.^2));
end
% 相位编码信号(BPSK)
function [pc_signal, code] = generate_phase_code(fc, chipWidth, codeSeq, fs)
chipSamples = round(chipWidth * fs);
pc_signal = [];
code = [];
for i = 1:length(codeSeq)
chip = ones(1, chipSamples) * exp(1j*pi*codeSeq(i));
pc_signal = [pc_signal, chip];
code = [code, repmat(codeSeq(i), 1, chipSamples)];
end
t = (0:length(pc_signal)-1)/fs;
pc_signal = pc_signal .* exp(1j*2*pi*fc*t);
end
% 脉冲压缩处理
function compressed = pulse_compression(tx_signal, rx_signal)
tx_conj = conj(fliplr(tx_signal));
compressed = conv(rx_signal, tx_conj, 'same');
end
% 动目标显示(MTI)滤波器
function mti_output = mti_filter(input_pulses)
[num_samples, num_pulses] = size(input_pulses);
mti_output = zeros(num_samples, num_pulses-2);
for i = 3:num_pulses
mti_output(:,i-2) = input_pulses(:,i) - 2*input_pulses(:,i-1) + input_pulses(:,i-2);
end
end
3. 目标与环境建模
matlab
% 目标模型 (点目标)
classdef TargetModel < handle
properties
position = [0; 0; 0]; % 位置 (x,y,z) in meters
velocity = [0; 0; 0]; % 速度 (vx,vy,vz) in m/s
rcs = 1; % 雷达截面积 in m²
trajectory = 'linear'; % 轨迹类型
end
methods
function obj = TargetModel(pos, vel, rcs)
if nargin > 0
obj.position = pos;
obj.velocity = vel;
obj.rcs = rcs;
end
end
function updatePosition(obj, dt)
% 更新目标位置
obj.position = obj.position + obj.velocity * dt;
end
function r = range_to_radar(obj, radar_pos)
% 计算到雷达的距离
r = norm(obj.position - radar_pos);
end
function theta = azimuth_angle(obj, radar_pos)
% 计算方位角
rel_pos = obj.position - radar_pos;
theta = atan2(rel_pos(2), rel_pos(1));
end
function phi = elevation_angle(obj, radar_pos)
% 计算俯仰角
rel_pos = obj.position - radar_pos;
dist_xy = norm(rel_pos(1:2));
phi = atan2(rel_pos(3), dist_xy);
end
end
end
% 杂波模型
classdef ClutterModel < handle
properties
type = 'none'; % 杂波类型: none, gaussian, rayleigh, weibull
density = 0; % 杂波密度 (点/m²)
mean_rcs = 1; % 平均RCS
correlation = 0.5; % 相关性系数
end
methods
function clutter = generate_clutter(obj, area_size, resolution)
% 生成杂波点
if strcmp(obj.type, 'none')
clutter = [];
return;
end
num_points = round(obj.density * area_size^2);
x = (rand(1, num_points) - 0.5) * area_size;
y = (rand(1, num_points) - 0.5) * area_size;
z = zeros(1, num_points); % 地面杂波
% 随机RCS
rcs_values = obj.mean_rcs * exprnd(1, 1, num_points);
clutter = [x; y; z; rcs_values];
end
end
end
4. 天线与阵列处理
matlab
% 均匀线阵(ULA)模型
classdef UniformLinearArray < handle
properties
numElements = 8; % 阵元数量
elementSpacing = 0.5; % 阵元间距 (波长倍数)
steeringVector = []; % 导向矢量
end
methods
function obj = UniformLinearArray(numElements, spacing)
if nargin > 0
obj.numElements = numElements;
if nargin > 1
obj.elementSpacing = spacing;
end
end
end
function sv = getSteeringVector(obj, theta, freq)
% 计算导向矢量
c = 3e8; % 光速
lambda = c/freq;
d = obj.elementSpacing * lambda;
angles = (0:obj.numElements-1) * 2*pi * d * sind(theta) / lambda;
sv = exp(1j*angles).';
end
function bfWeights = beamform(obj, theta, freq)
% 波束形成权重
sv = obj.getSteeringVector(theta, freq);
bfWeights = conj(sv) / obj.numElements;
end
function [mvdrWeights, mvdrResponse] = mvdrBeamformer(obj, covarianceMatrix, theta_target, freq)
% MVDR波束形成器
sv = obj.getSteeringVector(theta_target, freq);
invCov = inv(covarianceMatrix);
numerator = invCov * sv;
denominator = sv' * invCov * sv;
mvdrWeights = numerator / denominator;
% 波束方向图
thetas = -90:0.5:90;
response = zeros(size(thetas));
for i = 1:length(thetas)
sv_i = obj.getSteeringVector(thetas(i), freq);
response(i) = abs(mvdrWeights' * sv_i);
end
mvdrResponse = response;
end
end
end
% 天线方向图模型
function pattern = antenna_pattern(angle, type, params)
% 计算天线方向图
switch lower(type)
case 'isotropic'
pattern = ones(size(angle));
case 'dipole'
pattern = abs(cos(pi/2 * cos(angle)) ./ sin(angle));
pattern(angle == 0) = 1; % 避免除以零
case 'parabolic'
beamwidth = params.beamwidth;
pattern = exp(-2.776*(angle/beamwidth).^2);
case 'sinc'
mainlobe_width = params.mainlobe_width;
pattern = abs(sinc(angle/mainlobe_width));
otherwise
error('未知天线类型');
end
end
5. 高级信号处理算法
matlab
% 卡尔曼滤波器
classdef KalmanFilter < handle
properties
F = eye(6); % 状态转移矩阵
H = eye(3,6); % 观测矩阵
Q = eye(6)*0.01; % 过程噪声协方差
R = eye(3)*0.1; % 观测噪声协方差
x = zeros(6,1); % 状态向量 [x,y,z,vx,vy,vz]'
P = eye(6); % 误差协方差矩阵
end
methods
function obj = KalmanFilter(dt)
% 初始化状态转移矩阵
obj.F(1:3,4:6) = eye(3)*dt;
obj.Q(1:3,1:3) = eye(3)*0.1*dt^2;
obj.Q(4:6,4:6) = eye(3)*0.1*dt;
end
function predict(obj)
% 预测步骤
obj.x = obj.F * obj.x;
obj.P = obj.F * obj.P * obj.F' + obj.Q;
end
function update(obj, z)
% 更新步骤
y = z - obj.H * obj.x;
S = obj.H * obj.P * obj.H' + obj.R;
K = obj.P * obj.H' / S;
obj.x = obj.x + K * y;
obj.P = (eye(size(obj.P)) - K * obj.H) * obj.P;
end
end
end
% 粒子滤波器
classdef ParticleFilter < handle
properties
numParticles = 1000; % 粒子数量
particles; % 粒子集
weights; % 权重
stateDim = 6; % 状态维度
dynamicsModel; % 动态模型函数句柄
measurementModel; % 测量模型函数句柄
processNoise; % 过程噪声
measurementNoise; % 测量噪声
end
methods
function obj = ParticleFilter(numParticles, initState, dynamics, measurement)
obj.numParticles = numParticles;
obj.dynamicsModel = dynamics;
obj.measurementModel = measurement;
% 初始化粒子
obj.particles = repmat(initState, 1, numParticles) + randn(obj.stateDim, numParticles)*0.1;
obj.weights = ones(1, numParticles)/numParticles;
end
function predict(obj)
% 预测步骤
for i = 1:obj.numParticles
obj.particles(:,i) = obj.dynamicsModel(obj.particles(:,i));
end
end
function update(obj, measurement)
% 更新步骤
likelihoods = zeros(1, obj.numParticles);
for i = 1:obj.numParticles
pred_z = obj.measurementModel(obj.particles(:,i));
likelihoods(i) = mvnpdf(measurement, pred_z, obj.measurementNoise);
end
% 更新权重
obj.weights = obj.weights .* likelihoods;
obj.weights = obj.weights / sum(obj.weights);
% 重采样
if neff(obj.weights) < obj.numParticles/2
obj.resample();
end
end
function resample(obj)
% 系统重采样
indices = randsample(1:obj.numParticles, obj.numParticles, true, obj.weights);
obj.particles = obj.particles(:,indices);
obj.weights = ones(1, obj.numParticles)/obj.numParticles;
end
function estState = estimate(obj)
% 状态估计
estState = obj.particles * obj.weights';
end
function n = neff(obj, weights)
% 计算有效样本大小
n = 1 / sum(weights.^2);
end
end
end
四、雷达系统仿真示例
1. 基本脉冲雷达仿真
matlab
% 创建雷达系统实例
radar = RadarSystem();
% 设置目标参数
radar.targetRange = 15e3; % 15 km
radar.targetVelocity = 200; % 200 m/s
radar.targetRCS = 2; % 2 m²
% 运行仿真
[txSignal, time] = radar.generateTransmitSignal();
rxSignal = radar.simulatePropagation(txSignal, time);
mfOutput = radar.matchedFilter(rxSignal, txSignal);
[rangeProfile, rangeAxis] = radar.rangeCompression(mfOutput);
% 显示结果
figure;
subplot(2,1,1);
plot(time*1e6, real(txSignal));
xlabel('时间 (\mus)');
ylabel('幅度');
title('发射信号 (LFM脉冲)');
subplot(2,1,2);
plot(rangeAxis/1e3, 20*log10(abs(mfOutput)/max(abs(mfOutput))));
xlabel('距离 (km)');
ylabel('幅度 (dB)');
title('匹配滤波输出');
grid on;
2. 脉冲多普勒雷达仿真
matlab
% 创建雷达系统实例
pdRadar = RadarSystem();
pdRadar.pulseNum = 64; % 64个脉冲
pdRadar.prf = 5e3; % PRF 5 kHz
pdRadar.targetVelocity = 150; % 150 m/s
% 运行仿真
[detectionMap, rangeAxis, velocityAxis] = pdRadar.detectTargets();
% 提取目标参数
[~, maxIdx] = max(detectionMap(:));
[row, col] = ind2sub(size(detectionMap), maxIdx);
detectedRange = rangeAxis(row);
detectedVelocity = velocityAxis(col);
fprintf('目标参数估计:\n');
fprintf('实际距离: %.2f km, 估计距离: %.2f km\n', ...
pdRadar.targetRange/1e3, detectedRange/1e3);
fprintf('实际速度: %.2f m/s, 估计速度: %.2f m/s\n', ...
pdRadar.targetVelocity, detectedVelocity);
3. 相控阵雷达仿真
matlab
% 创建均匀线阵
ula = UniformLinearArray(16, 0.5); % 16阵元,半波长间距
% 波束指向
theta_target = 30; % 30度
freq = 10e9; % 10 GHz
bfWeights = ula.beamform(theta_target, freq);
% 绘制波束方向图
thetas = -90:0.1:90;
pattern = zeros(size(thetas));
for i = 1:length(thetas)
sv = ula.getSteeringVector(thetas(i), freq);
pattern(i) = abs(bfWeights' * sv);
end
figure;
polarplot(deg2rad(thetas), pattern);
title('16阵元均匀线阵波束方向图');
rlim([0 1]);
% MVDR波束形成
covMatrix = eye(16); % 理想情况下为单位阵
[mvdrWeights, mvdrPattern] = ula.mvdrBeamformer(covMatrix, theta_target, freq);
figure;
polarplot(deg2rad(thetas), mvdrPattern);
title('MVDR波束方向图');
rlim([0 1]);
4. 目标跟踪仿真
matlab
% 创建卡尔曼滤波器
dt = 0.1; % 时间步长 0.1s
kf = KalmanFilter(dt);
% 初始状态 [x,y,z,vx,vy,vz]
kf.x = [0; 0; 1000; 100; 0; -50];
% 模拟目标运动
numSteps = 100;
trueTrajectory = zeros(6, numSteps);
measuredTrajectory = zeros(3, numSteps);
estimatedTrajectory = zeros(6, numSteps);
for k = 1:numSteps
% 真实状态更新 (匀速运动)
trueState = kf.F * kf.x;
trueTrajectory(:,k) = trueState;
% 模拟测量 (带噪声的位置)
measurement = trueState(1:3) + randn(3,1)*10;
measuredTrajectory(:,k) = measurement;
% 卡尔曼滤波
kf.predict();
kf.update(measurement);
estimatedTrajectory(:,k) = kf.x;
end
% 绘制结果
figure;
plot3(trueTrajectory(1,:)/1e3, trueTrajectory(2,:)/1e3, trueTrajectory(3,:)/1e3, 'b-', 'LineWidth', 2);
hold on;
plot3(measuredTrajectory(1,:)/1e3, measuredTrajectory(2,:)/1e3, measuredTrajectory(3,:)/1e3, 'ro');
plot3(estimatedTrajectory(1,:)/1e3, estimatedTrajectory(2,:)/1e3, estimatedTrajectory(3,:)/1e3, 'g--', 'LineWidth', 2);
xlabel('X (km)');
ylabel('Y (km)');
zlabel('Z (km)');
legend('真实轨迹', '测量值', '卡尔曼滤波估计');
title('三维目标跟踪');
grid on;
axis equal;
五、系统性能评估
1. 距离分辨率分析
matlab
% 距离分辨率计算
function resolution = calculate_range_resolution(bandwidth, c)
% 输入: bandwidth (Hz), c (光速, m/s)
% 输出: 距离分辨率 (m)
resolution = c / (2 * bandwidth);
end
% 示例
bw = 10e6; % 10 MHz带宽
c = 3e8; % 光速
res = calculate_range_resolution(bw, c);
fprintf('距离分辨率: %.2f m\n', res);
2. 多普勒分辨率分析
matlab
% 多普勒分辨率计算
function resolution = calculate_doppler_resolution(prf, numPulses, c, fc)
% 输入: prf (Hz), numPulses, c (光速, m/s), fc (载频, Hz)
% 输出: 多普勒分辨率 (m/s)
lambda = c / fc;
resolution = lambda * prf / (2 * numPulses);
end
% 示例
prf = 5e3; % 5 kHz PRF
numPulses = 64; % 64个脉冲
fc = 10e9; % 10 GHz载频
dopplerRes = calculate_doppler_resolution(prf, numPulses, c, fc);
fprintf('多普勒分辨率: %.2f m/s\n', dopplerRes);
3. 最大不模糊距离与速度
matlab
% 最大不模糊距离
function maxRange = max_unambiguous_range(prf, c)
maxRange = c / (2 * prf);
end
% 最大不模糊速度
function maxVelocity = max_unambiguous_velocity(prf, lambda)
maxVelocity = lambda * prf / 4;
end
% 示例
prf = 10e3; % 10 kHz PRF
lambda = 0.03; % 3 cm波长 (10 GHz)
maxRange = max_unambiguous_range(prf, c);
maxVel = max_unambiguous_velocity(prf, lambda);
fprintf('最大不模糊距离: %.2f km\n', maxRange/1e3);
fprintf('最大不模糊速度: %.2f m/s (%.2f km/h)\n', maxVel, maxVel*3.6);
六、高级应用:合成孔径雷达(SAR)成像
matlab
function sarImagingDemo()
% SAR成像仿真参数
c = 3e8; % 光速
fc = 5.3e9; % C波段 5.3 GHz
lambda = c/fc; % 波长
v = 100; % 平台速度 100 m/s
H = 5000; % 平台高度 5 km
R0 = sqrt(H^2) = 5000; % 最近斜距
D = 2; % 目标距离跨度 2 km
PRF = 1000; % 脉冲重复频率 1 kHz
N = 512; % 方位向采样点数
M = 512; % 距离向采样点数
Tp = 1e-6; % 脉宽 1 μs
Br = 50e6; % 带宽 50 MHz
% 生成目标场景 (点目标)
targets = [0, 0, 1; % [x, y, RCS]
500, 0, 1;
-500, 0, 1;
0, 500, 1;
0, -500, 1];
% 距离压缩
[txSig, t] = generate_lfm(fc, Br, Tp, 2*Br);
rangeCompressed = zeros(N, M);
% 方位向时间轴
ta = (0:N-1)/PRF;
for i = 1:size(targets,1)
x = targets(i,1);
y = targets(i,2);
R = sqrt((x - v*ta).^2 + y^2 + H^2);
tau = 2*R/c;
phase = 4*pi*fc*R/c + pi*Br*tau.^2/Tp^2;
echo = sqrt(targets(i,3)) * exp(1j*phase);
% 距离压缩
compressed = pulse_compression(txSig, echo);
rangeCompressed = rangeCompressed + compressed;
end
% 距离徙动校正 (RCMC) 和方位压缩
% (此处简化,实际需要更复杂的处理)
sarImage = fftshift(fft(rangeCompressed, [], 1), 1);
% 显示SAR图像
figure;
imagesc(abs(sarImage));
colormap(jet);
colorbar;
title('SAR成像结果');
xlabel('方位向');
ylabel('距离向');
end
参考代码 matlab仿真雷达设计 www.youwenfan.com/contentcsm/83134.html
七、总结与应用
系统特点:
- 模块化设计:各组件独立封装,便于扩展和修改
- 物理精确:基于电磁传播理论精确建模
- 算法丰富:包含多种雷达信号处理算法
- 可视化强:提供丰富的图形展示功能
应用领域:
- 军事目标探测与跟踪
- 航空管制与导航
- 气象监测与预报
- 地形测绘与遥感
- 自动驾驶环境感知
- 工业无损检测
扩展方向:
- 多输入多输出(MIMO)雷达
- 认知雷达自适应波形设计
- 人工智能辅助目标识别
- 分布式协同雷达网络
- 太赫兹频段雷达技术
- 量子雷达基础研究
使用提示:
- 在MATLAB中运行前,请确保安装了Signal Processing Toolbox
- 复杂仿真可能需要较高计算资源
- 实际雷达系统设计需考虑更多工程因素
- 可根据具体需求调整参数和算法