MATLAB雷达系统设计与仿真

MATLAB雷达系统设计与仿真

一、雷达系统概述

雷达(Radio Detection and Ranging)是一种利用电磁波探测目标的电子设备。本仿真系统实现了完整的雷达信号处理链,包括发射机、传播信道、目标模型、接收机和信号处理模块。

二、系统架构

复制代码
发射机 → 传播信道 → 目标模型 → 接收机 → 信号处理 → 目标检测

三、MATLAB实现代码

1. 雷达系统主程序

matlab 复制代码
classdef RadarSystem < handle
    properties
        % 雷达参数
        freq = 10e9;          % 载频 10 GHz (X波段)
        bandwidth = 10e6;      % 带宽 10 MHz
        pulseWidth = 1e-6;     % 脉宽 1 μs
        prf = 10e3;            % 脉冲重复频率 10 kHz
        pulseNum = 128;        % 脉冲数
        txPower = 1e3;         % 发射功率 1 kW
        antennaGain = 30;      % 天线增益 30 dB
        noiseFigure = 3;       % 噪声系数 3 dB
        
        % 目标参数
        targetRange = 10e3;    % 目标距离 10 km
        targetVelocity = 100;  % 目标速度 100 m/s
        targetRCS = 1;         % 目标RCS 1 m²
        
        % 环境参数
        propLossExp = 2;       % 路径损耗指数
        clutterType = 'none';  % 杂波类型
        
        % 信号处理参数
        fftSize = 1024;        % FFT点数
        window = 'hamming';    % 加窗类型
    end
    
    methods
        function obj = RadarSystem()
            % 构造函数
        end
        
        function [txSignal, time] = generateTransmitSignal(obj)
            % 生成发射信号 (LFM脉冲)
            fs = 2 * obj.bandwidth;  % 采样率
            t = 0:1/fs:obj.pulseWidth-1/fs;
            chirpRate = obj.bandwidth / obj.pulseWidth;
            txSignal = exp(1j*pi*chirpRate*t.^2);
            time = t;
        end
        
        function rxSignal = simulatePropagation(obj, txSignal, time)
            % 模拟信号传播过程
            c = 3e8; % 光速
            
            % 计算目标延迟
            delay = 2 * obj.targetRange / c;
            delaySamples = round(delay * length(time)/max(time));
            
            % 计算多普勒频移
            dopplerFreq = 2 * obj.targetVelocity / c * obj.freq;
            
            % 生成回波信号
            rxSignal = zeros(size(txSignal));
            echo = txSignal .* exp(1j*2*pi*dopplerFreq*time);
            
            % 添加延迟
            if delaySamples < length(rxSignal)
                rxSignal(delaySamples+1:end) = echo(1:end-delaySamples);
            end
            
            % 添加路径损耗
            rangeLoss = (obj.targetRange)^(-obj.propLossExp);
            rxSignal = rxSignal * sqrt(rangeLoss);
            
            % 添加目标RCS影响
            rxSignal = rxSignal * sqrt(obj.targetRCS);
            
            % 添加热噪声
            k = 1.38e-23; % 玻尔兹曼常数
            T0 = 290;     % 标准温度
            noisePower = k * T0 * obj.noiseFigure * fs;
            noise = sqrt(noisePower/2) * (randn(size(rxSignal)) + 1j*randn(size(rxSignal)));
            rxSignal = rxSignal + noise;
        end
        
        function mfOutput = matchedFilter(obj, rxSignal, txSignal)
            % 匹配滤波处理
            n = length(txSignal);
            txConj = conj(fliplr(txSignal));
            mfOutput = conv(rxSignal, txConj, 'same');
        end
        
        function [rangeProfile, rangeAxis] = rangeCompression(obj, mfOutput)
            % 距离压缩处理
            c = 3e8;
            fs = 2 * obj.bandwidth;
            maxRange = c/(2*fs); % 最大无模糊距离
            rangeAxis = linspace(0, maxRange, length(mfOutput));
            rangeProfile = abs(mfOutput);
        end
        
        function [dopplerProfile, velocityAxis] = dopplerProcessing(obj, pulses)
            % 多普勒处理 (MTI + MTD)
            c = 3e8;
            lambda = c/obj.freq;
            
            % 脉冲压缩后的数据立方体 [快时间×慢时间]
            compressedPulses = zeros(size(pulses,1), size(pulses,2));
            for i = 1:size(pulses,2)
                compressedPulses(:,i) = abs(obj.matchedFilter(pulses(:,i), obj.generateTransmitSignal()));
            end
            
            % 加窗处理
            win = window(@hamming, size(compressedPulses,1));
            compressedPulses = compressedPulses .* win;
            
            % 多普勒FFT
            dopplerFFT = fftshift(fft(compressedPulses, obj.fftSize, 1), 1);
            dopplerProfile = abs(dopplerFFT);
            
            % 速度轴
            velocityRes = lambda * obj.prf / (2 * obj.fftSize);
            velocityAxis = (-obj.fftSize/2:obj.fftSize/2-1) * velocityRes;
        end
        
        function [detectionMap, rangeAxis, velocityAxis] = detectTargets(obj)
            % 完整的目标检测流程
            % 1. 生成发射信号
            [txSignal, time] = obj.generateTransmitSignal();
            
            % 2. 模拟多个脉冲
            pulses = zeros(length(txSignal), obj.pulseNum);
            for i = 1:obj.pulseNum
                % 更新目标位置 (假设匀速直线运动)
                obj.targetRange = obj.targetRange - obj.targetVelocity * (i-1)/obj.prf;
                obj.targetVelocity = obj.targetVelocity; % 假设速度不变
                
                % 生成回波
                rxSignal = obj.simulatePropagation(txSignal, time);
                pulses(:,i) = rxSignal;
            end
            
            % 3. 多普勒处理
            [dopplerProfile, velocityAxis] = obj.dopplerProcessing(pulses);
            
            % 4. 距离处理
            [rangeProfile, rangeAxis] = obj.rangeCompression(mean(pulses,2));
            
            % 5. CFAR检测 (恒虚警率检测)
            detectionMap = obj.cfarDetection(dopplerProfile);
            
            % 6. 显示结果
            obj.displayResults(rangeProfile, dopplerProfile, detectionMap, rangeAxis, velocityAxis);
        end
        
        function detectionMap = cfarDetection(obj, data)
            % 恒虚警率检测 (CA-CFAR)
            guardCells = 4;   % 保护单元数
            trainCells = 8;   % 参考单元数
            pfa = 1e-6;       % 虚警概率
            
            [rows, cols] = size(data);
            detectionMap = false(rows, cols);
            
            % 计算阈值因子
            alpha = trainCells * (pfa^(-1/trainCells) - 1);
            
            for i = 1:rows
                for j = 1:cols
                    % 确定参考窗口
                    leftStart = max(1, j-trainCells-guardCells);
                    leftEnd = j-guardCells-1;
                    rightStart = j+guardCells+1;
                    rightEnd = min(cols, j+trainCells+guardCells);
                    
                    % 收集参考单元
                    refCells = [];
                    if leftStart <= leftEnd
                        refCells = [refCells, data(i, leftStart:leftEnd)];
                    end
                    if rightStart <= rightEnd
                        refCells = [refCells, data(i, rightStart:rightEnd)];
                    end
                    
                    % 计算噪声功率估计
                    noisePower = mean(refCells.^2);
                    
                    % 计算检测门限
                    threshold = alpha * noisePower;
                    
                    % 检测判决
                    if data(i,j)^2 > threshold
                        detectionMap(i,j) = true;
                    end
                end
            end
        end
        
        function displayResults(obj, rangeProfile, dopplerProfile, detectionMap, rangeAxis, velocityAxis)
            % 显示处理结果
            figure('Name', '雷达系统仿真结果', 'Position', [100, 100, 1200, 800]);
            
            % 距离剖面
            subplot(2,2,1);
            plot(rangeAxis/1e3, 20*log10(rangeProfile/max(rangeProfile)));
            xlabel('距离 (km)');
            ylabel('幅度 (dB)');
            title('距离剖面');
            grid on;
            
            % 多普勒剖面
            subplot(2,2,2);
            imagesc(velocityAxis, rangeAxis/1e3, 20*log10(dopplerProfile/max(dopplerProfile(:))));
            xlabel('速度 (m/s)');
            ylabel('距离 (km)');
            title('距离-多普勒图');
            colorbar;
            axis xy;
            
            % CFAR检测结果
            subplot(2,2,3);
            imagesc(velocityAxis, rangeAxis/1e3, double(detectionMap));
            xlabel('速度 (m/s)');
            ylabel('距离 (km)');
            title('CFAR检测结果');
            colormap(gray);
            axis xy;
            
            % 雷达参数显示
            subplot(2,2,4);
            text(0.1, 0.9, sprintf('雷达参数'), 'FontSize', 12, 'FontWeight', 'bold');
            text(0.1, 0.7, sprintf('载频: %.2f GHz', obj.freq/1e9));
            text(0.1, 0.6, sprintf('带宽: %.2f MHz', obj.bandwidth/1e6));
            text(0.1, 0.5, sprintf('脉宽: %.2f μs', obj.pulseWidth*1e6));
            text(0.1, 0.4, sprintf('PRF: %.2f kHz', obj.prf/1e3));
            text(0.1, 0.3, sprintf('脉冲数: %d', obj.pulseNum));
            text(0.1, 0.2, sprintf('目标距离: %.2f km', obj.targetRange/1e3));
            text(0.1, 0.1, sprintf('目标速度: %.2f m/s', obj.targetVelocity));
            axis off;
        end
    end
end

2. 雷达波形生成与处理

matlab 复制代码
% 线性调频(LFM)信号生成
function [lfm_signal, t] = generate_lfm(fc, bw, T, fs)
    c = 3e8; % 光速
    t = 0:1/fs:T-1/fs;
    k = bw/T; % 调频斜率
    lfm_signal = exp(1j*2*pi*(fc*t + 0.5*k*t.^2));
end

% 相位编码信号(BPSK)
function [pc_signal, code] = generate_phase_code(fc, chipWidth, codeSeq, fs)
    chipSamples = round(chipWidth * fs);
    pc_signal = [];
    code = [];
    for i = 1:length(codeSeq)
        chip = ones(1, chipSamples) * exp(1j*pi*codeSeq(i));
        pc_signal = [pc_signal, chip];
        code = [code, repmat(codeSeq(i), 1, chipSamples)];
    end
    t = (0:length(pc_signal)-1)/fs;
    pc_signal = pc_signal .* exp(1j*2*pi*fc*t);
end

% 脉冲压缩处理
function compressed = pulse_compression(tx_signal, rx_signal)
    tx_conj = conj(fliplr(tx_signal));
    compressed = conv(rx_signal, tx_conj, 'same');
end

% 动目标显示(MTI)滤波器
function mti_output = mti_filter(input_pulses)
    [num_samples, num_pulses] = size(input_pulses);
    mti_output = zeros(num_samples, num_pulses-2);
    for i = 3:num_pulses
        mti_output(:,i-2) = input_pulses(:,i) - 2*input_pulses(:,i-1) + input_pulses(:,i-2);
    end
end

3. 目标与环境建模

matlab 复制代码
% 目标模型 (点目标)
classdef TargetModel < handle
    properties
        position = [0; 0; 0];   % 位置 (x,y,z) in meters
        velocity = [0; 0; 0];   % 速度 (vx,vy,vz) in m/s
        rcs = 1;                % 雷达截面积 in m²
        trajectory = 'linear';  % 轨迹类型
    end
    
    methods
        function obj = TargetModel(pos, vel, rcs)
            if nargin > 0
                obj.position = pos;
                obj.velocity = vel;
                obj.rcs = rcs;
            end
        end
        
        function updatePosition(obj, dt)
            % 更新目标位置
            obj.position = obj.position + obj.velocity * dt;
        end
        
        function r = range_to_radar(obj, radar_pos)
            % 计算到雷达的距离
            r = norm(obj.position - radar_pos);
        end
        
        function theta = azimuth_angle(obj, radar_pos)
            % 计算方位角
            rel_pos = obj.position - radar_pos;
            theta = atan2(rel_pos(2), rel_pos(1));
        end
        
        function phi = elevation_angle(obj, radar_pos)
            % 计算俯仰角
            rel_pos = obj.position - radar_pos;
            dist_xy = norm(rel_pos(1:2));
            phi = atan2(rel_pos(3), dist_xy);
        end
    end
end

% 杂波模型
classdef ClutterModel < handle
    properties
        type = 'none';      % 杂波类型: none, gaussian, rayleigh, weibull
        density = 0;        % 杂波密度 (点/m²)
        mean_rcs = 1;       % 平均RCS
        correlation = 0.5;  % 相关性系数
    end
    
    methods
        function clutter = generate_clutter(obj, area_size, resolution)
            % 生成杂波点
            if strcmp(obj.type, 'none')
                clutter = [];
                return;
            end
            
            num_points = round(obj.density * area_size^2);
            x = (rand(1, num_points) - 0.5) * area_size;
            y = (rand(1, num_points) - 0.5) * area_size;
            z = zeros(1, num_points); % 地面杂波
            
            % 随机RCS
            rcs_values = obj.mean_rcs * exprnd(1, 1, num_points);
            
            clutter = [x; y; z; rcs_values];
        end
    end
end

4. 天线与阵列处理

matlab 复制代码
% 均匀线阵(ULA)模型
classdef UniformLinearArray < handle
    properties
        numElements = 8;     % 阵元数量
        elementSpacing = 0.5; % 阵元间距 (波长倍数)
        steeringVector = []; % 导向矢量
    end
    
    methods
        function obj = UniformLinearArray(numElements, spacing)
            if nargin > 0
                obj.numElements = numElements;
                if nargin > 1
                    obj.elementSpacing = spacing;
                end
            end
        end
        
        function sv = getSteeringVector(obj, theta, freq)
            % 计算导向矢量
            c = 3e8; % 光速
            lambda = c/freq;
            d = obj.elementSpacing * lambda;
            angles = (0:obj.numElements-1) * 2*pi * d * sind(theta) / lambda;
            sv = exp(1j*angles).';
        end
        
        function bfWeights = beamform(obj, theta, freq)
            % 波束形成权重
            sv = obj.getSteeringVector(theta, freq);
            bfWeights = conj(sv) / obj.numElements;
        end
        
        function [mvdrWeights, mvdrResponse] = mvdrBeamformer(obj, covarianceMatrix, theta_target, freq)
            % MVDR波束形成器
            sv = obj.getSteeringVector(theta_target, freq);
            invCov = inv(covarianceMatrix);
            numerator = invCov * sv;
            denominator = sv' * invCov * sv;
            mvdrWeights = numerator / denominator;
            
            % 波束方向图
            thetas = -90:0.5:90;
            response = zeros(size(thetas));
            for i = 1:length(thetas)
                sv_i = obj.getSteeringVector(thetas(i), freq);
                response(i) = abs(mvdrWeights' * sv_i);
            end
            mvdrResponse = response;
        end
    end
end

% 天线方向图模型
function pattern = antenna_pattern(angle, type, params)
    % 计算天线方向图
    switch lower(type)
        case 'isotropic'
            pattern = ones(size(angle));
        case 'dipole'
            pattern = abs(cos(pi/2 * cos(angle)) ./ sin(angle));
            pattern(angle == 0) = 1; % 避免除以零
        case 'parabolic'
            beamwidth = params.beamwidth;
            pattern = exp(-2.776*(angle/beamwidth).^2);
        case 'sinc'
            mainlobe_width = params.mainlobe_width;
            pattern = abs(sinc(angle/mainlobe_width));
        otherwise
            error('未知天线类型');
    end
end

5. 高级信号处理算法

matlab 复制代码
% 卡尔曼滤波器
classdef KalmanFilter < handle
    properties
        F = eye(6);       % 状态转移矩阵
        H = eye(3,6);     % 观测矩阵
        Q = eye(6)*0.01;  % 过程噪声协方差
        R = eye(3)*0.1;   % 观测噪声协方差
        x = zeros(6,1);   % 状态向量 [x,y,z,vx,vy,vz]'
        P = eye(6);       % 误差协方差矩阵
    end
    
    methods
        function obj = KalmanFilter(dt)
            % 初始化状态转移矩阵
            obj.F(1:3,4:6) = eye(3)*dt;
            obj.Q(1:3,1:3) = eye(3)*0.1*dt^2;
            obj.Q(4:6,4:6) = eye(3)*0.1*dt;
        end
        
        function predict(obj)
            % 预测步骤
            obj.x = obj.F * obj.x;
            obj.P = obj.F * obj.P * obj.F' + obj.Q;
        end
        
        function update(obj, z)
            % 更新步骤
            y = z - obj.H * obj.x;
            S = obj.H * obj.P * obj.H' + obj.R;
            K = obj.P * obj.H' / S;
            obj.x = obj.x + K * y;
            obj.P = (eye(size(obj.P)) - K * obj.H) * obj.P;
        end
    end
end

% 粒子滤波器
classdef ParticleFilter < handle
    properties
        numParticles = 1000;  % 粒子数量
        particles;            % 粒子集
        weights;              % 权重
        stateDim = 6;         % 状态维度
        dynamicsModel;        % 动态模型函数句柄
        measurementModel;     % 测量模型函数句柄
        processNoise;         % 过程噪声
        measurementNoise;     % 测量噪声
    end
    
    methods
        function obj = ParticleFilter(numParticles, initState, dynamics, measurement)
            obj.numParticles = numParticles;
            obj.dynamicsModel = dynamics;
            obj.measurementModel = measurement;
            
            % 初始化粒子
            obj.particles = repmat(initState, 1, numParticles) + randn(obj.stateDim, numParticles)*0.1;
            obj.weights = ones(1, numParticles)/numParticles;
        end
        
        function predict(obj)
            % 预测步骤
            for i = 1:obj.numParticles
                obj.particles(:,i) = obj.dynamicsModel(obj.particles(:,i));
            end
        end
        
        function update(obj, measurement)
            % 更新步骤
            likelihoods = zeros(1, obj.numParticles);
            for i = 1:obj.numParticles
                pred_z = obj.measurementModel(obj.particles(:,i));
                likelihoods(i) = mvnpdf(measurement, pred_z, obj.measurementNoise);
            end
            
            % 更新权重
            obj.weights = obj.weights .* likelihoods;
            obj.weights = obj.weights / sum(obj.weights);
            
            % 重采样
            if neff(obj.weights) < obj.numParticles/2
                obj.resample();
            end
        end
        
        function resample(obj)
            % 系统重采样
            indices = randsample(1:obj.numParticles, obj.numParticles, true, obj.weights);
            obj.particles = obj.particles(:,indices);
            obj.weights = ones(1, obj.numParticles)/obj.numParticles;
        end
        
        function estState = estimate(obj)
            % 状态估计
            estState = obj.particles * obj.weights';
        end
        
        function n = neff(obj, weights)
            % 计算有效样本大小
            n = 1 / sum(weights.^2);
        end
    end
end

四、雷达系统仿真示例

1. 基本脉冲雷达仿真

matlab 复制代码
% 创建雷达系统实例
radar = RadarSystem();

% 设置目标参数
radar.targetRange = 15e3;    % 15 km
radar.targetVelocity = 200;  % 200 m/s
radar.targetRCS = 2;         % 2 m²

% 运行仿真
[txSignal, time] = radar.generateTransmitSignal();
rxSignal = radar.simulatePropagation(txSignal, time);
mfOutput = radar.matchedFilter(rxSignal, txSignal);
[rangeProfile, rangeAxis] = radar.rangeCompression(mfOutput);

% 显示结果
figure;
subplot(2,1,1);
plot(time*1e6, real(txSignal));
xlabel('时间 (\mus)');
ylabel('幅度');
title('发射信号 (LFM脉冲)');

subplot(2,1,2);
plot(rangeAxis/1e3, 20*log10(abs(mfOutput)/max(abs(mfOutput))));
xlabel('距离 (km)');
ylabel('幅度 (dB)');
title('匹配滤波输出');
grid on;

2. 脉冲多普勒雷达仿真

matlab 复制代码
% 创建雷达系统实例
pdRadar = RadarSystem();
pdRadar.pulseNum = 64;       % 64个脉冲
pdRadar.prf = 5e3;           % PRF 5 kHz
pdRadar.targetVelocity = 150; % 150 m/s

% 运行仿真
[detectionMap, rangeAxis, velocityAxis] = pdRadar.detectTargets();

% 提取目标参数
[~, maxIdx] = max(detectionMap(:));
[row, col] = ind2sub(size(detectionMap), maxIdx);
detectedRange = rangeAxis(row);
detectedVelocity = velocityAxis(col);

fprintf('目标参数估计:\n');
fprintf('实际距离: %.2f km, 估计距离: %.2f km\n', ...
    pdRadar.targetRange/1e3, detectedRange/1e3);
fprintf('实际速度: %.2f m/s, 估计速度: %.2f m/s\n', ...
    pdRadar.targetVelocity, detectedVelocity);

3. 相控阵雷达仿真

matlab 复制代码
% 创建均匀线阵
ula = UniformLinearArray(16, 0.5); % 16阵元,半波长间距

% 波束指向
theta_target = 30; % 30度
freq = 10e9;       % 10 GHz
bfWeights = ula.beamform(theta_target, freq);

% 绘制波束方向图
thetas = -90:0.1:90;
pattern = zeros(size(thetas));
for i = 1:length(thetas)
    sv = ula.getSteeringVector(thetas(i), freq);
    pattern(i) = abs(bfWeights' * sv);
end

figure;
polarplot(deg2rad(thetas), pattern);
title('16阵元均匀线阵波束方向图');
rlim([0 1]);

% MVDR波束形成
covMatrix = eye(16); % 理想情况下为单位阵
[mvdrWeights, mvdrPattern] = ula.mvdrBeamformer(covMatrix, theta_target, freq);

figure;
polarplot(deg2rad(thetas), mvdrPattern);
title('MVDR波束方向图');
rlim([0 1]);

4. 目标跟踪仿真

matlab 复制代码
% 创建卡尔曼滤波器
dt = 0.1; % 时间步长 0.1s
kf = KalmanFilter(dt);

% 初始状态 [x,y,z,vx,vy,vz]
kf.x = [0; 0; 1000; 100; 0; -50];

% 模拟目标运动
numSteps = 100;
trueTrajectory = zeros(6, numSteps);
measuredTrajectory = zeros(3, numSteps);
estimatedTrajectory = zeros(6, numSteps);

for k = 1:numSteps
    % 真实状态更新 (匀速运动)
    trueState = kf.F * kf.x;
    trueTrajectory(:,k) = trueState;
    
    % 模拟测量 (带噪声的位置)
    measurement = trueState(1:3) + randn(3,1)*10;
    measuredTrajectory(:,k) = measurement;
    
    % 卡尔曼滤波
    kf.predict();
    kf.update(measurement);
    estimatedTrajectory(:,k) = kf.x;
end

% 绘制结果
figure;
plot3(trueTrajectory(1,:)/1e3, trueTrajectory(2,:)/1e3, trueTrajectory(3,:)/1e3, 'b-', 'LineWidth', 2);
hold on;
plot3(measuredTrajectory(1,:)/1e3, measuredTrajectory(2,:)/1e3, measuredTrajectory(3,:)/1e3, 'ro');
plot3(estimatedTrajectory(1,:)/1e3, estimatedTrajectory(2,:)/1e3, estimatedTrajectory(3,:)/1e3, 'g--', 'LineWidth', 2);
xlabel('X (km)');
ylabel('Y (km)');
zlabel('Z (km)');
legend('真实轨迹', '测量值', '卡尔曼滤波估计');
title('三维目标跟踪');
grid on;
axis equal;

五、系统性能评估

1. 距离分辨率分析

matlab 复制代码
% 距离分辨率计算
function resolution = calculate_range_resolution(bandwidth, c)
    % 输入: bandwidth (Hz), c (光速, m/s)
    % 输出: 距离分辨率 (m)
    resolution = c / (2 * bandwidth);
end

% 示例
bw = 10e6; % 10 MHz带宽
c = 3e8;   % 光速
res = calculate_range_resolution(bw, c);
fprintf('距离分辨率: %.2f m\n', res);

2. 多普勒分辨率分析

matlab 复制代码
% 多普勒分辨率计算
function resolution = calculate_doppler_resolution(prf, numPulses, c, fc)
    % 输入: prf (Hz), numPulses, c (光速, m/s), fc (载频, Hz)
    % 输出: 多普勒分辨率 (m/s)
    lambda = c / fc;
    resolution = lambda * prf / (2 * numPulses);
end

% 示例
prf = 5e3;      % 5 kHz PRF
numPulses = 64; % 64个脉冲
fc = 10e9;      % 10 GHz载频
dopplerRes = calculate_doppler_resolution(prf, numPulses, c, fc);
fprintf('多普勒分辨率: %.2f m/s\n', dopplerRes);

3. 最大不模糊距离与速度

matlab 复制代码
% 最大不模糊距离
function maxRange = max_unambiguous_range(prf, c)
    maxRange = c / (2 * prf);
end

% 最大不模糊速度
function maxVelocity = max_unambiguous_velocity(prf, lambda)
    maxVelocity = lambda * prf / 4;
end

% 示例
prf = 10e3;     % 10 kHz PRF
lambda = 0.03;  % 3 cm波长 (10 GHz)
maxRange = max_unambiguous_range(prf, c);
maxVel = max_unambiguous_velocity(prf, lambda);
fprintf('最大不模糊距离: %.2f km\n', maxRange/1e3);
fprintf('最大不模糊速度: %.2f m/s (%.2f km/h)\n', maxVel, maxVel*3.6);

六、高级应用:合成孔径雷达(SAR)成像

matlab 复制代码
function sarImagingDemo()
    % SAR成像仿真参数
    c = 3e8;            % 光速
    fc = 5.3e9;         % C波段 5.3 GHz
    lambda = c/fc;       % 波长
    v = 100;            % 平台速度 100 m/s
    H = 5000;           % 平台高度 5 km
    R0 = sqrt(H^2) = 5000; % 最近斜距
    D = 2;              % 目标距离跨度 2 km
    PRF = 1000;         % 脉冲重复频率 1 kHz
    N = 512;            % 方位向采样点数
    M = 512;            % 距离向采样点数
    Tp = 1e-6;          % 脉宽 1 μs
    Br = 50e6;          % 带宽 50 MHz
    
    % 生成目标场景 (点目标)
    targets = [0, 0, 1;     % [x, y, RCS]
              500, 0, 1;
              -500, 0, 1;
              0, 500, 1;
              0, -500, 1];
    
    % 距离压缩
    [txSig, t] = generate_lfm(fc, Br, Tp, 2*Br);
    rangeCompressed = zeros(N, M);
    
    % 方位向时间轴
    ta = (0:N-1)/PRF;
    
    for i = 1:size(targets,1)
        x = targets(i,1);
        y = targets(i,2);
        R = sqrt((x - v*ta).^2 + y^2 + H^2);
        tau = 2*R/c;
        phase = 4*pi*fc*R/c + pi*Br*tau.^2/Tp^2;
        echo = sqrt(targets(i,3)) * exp(1j*phase);
        
        % 距离压缩
        compressed = pulse_compression(txSig, echo);
        rangeCompressed = rangeCompressed + compressed;
    end
    
    % 距离徙动校正 (RCMC) 和方位压缩
    % (此处简化,实际需要更复杂的处理)
    sarImage = fftshift(fft(rangeCompressed, [], 1), 1);
    
    % 显示SAR图像
    figure;
    imagesc(abs(sarImage));
    colormap(jet);
    colorbar;
    title('SAR成像结果');
    xlabel('方位向');
    ylabel('距离向');
end

参考代码 matlab仿真雷达设计 www.youwenfan.com/contentcsm/83134.html

七、总结与应用

系统特点:

  1. 模块化设计:各组件独立封装,便于扩展和修改
  2. 物理精确:基于电磁传播理论精确建模
  3. 算法丰富:包含多种雷达信号处理算法
  4. 可视化强:提供丰富的图形展示功能

应用领域:

  1. 军事目标探测与跟踪
  2. 航空管制与导航
  3. 气象监测与预报
  4. 地形测绘与遥感
  5. 自动驾驶环境感知
  6. 工业无损检测

扩展方向:

  1. 多输入多输出(MIMO)雷达
  2. 认知雷达自适应波形设计
  3. 人工智能辅助目标识别
  4. 分布式协同雷达网络
  5. 太赫兹频段雷达技术
  6. 量子雷达基础研究

使用提示

  1. 在MATLAB中运行前,请确保安装了Signal Processing Toolbox
  2. 复杂仿真可能需要较高计算资源
  3. 实际雷达系统设计需考虑更多工程因素
  4. 可根据具体需求调整参数和算法
相关推荐
IMPYLH1 小时前
Lua 的 type 函数
开发语言·笔记·后端·junit·lua
老华带你飞1 小时前
英语学习|基于Java英语学习系统(源码+数据库+文档)
java·开发语言·数据库·vue.js·spring boot·后端·学习
qq_479875431 小时前
C++ 模板元编程
java·开发语言·c++
codingPower1 小时前
Java EasyExcel创建复杂表格的完整指南:WriteTable
java·开发语言
爱装代码的小瓶子1 小时前
【cpp知识铺子】map与set的底层AVL树
开发语言·数据结构·c++·b树·算法·链表
IT·小灰灰1 小时前
腾讯HY2.0 Think推理模型深度解析:技术突破、应用场景与实践指南
开发语言·人工智能·python·深度学习·神经网络·算法·数据分析
源代码•宸1 小时前
100 Go Mistakes(#4 过度使用getter和setter、#5 接口污染)
开发语言·经验分享·后端·golang
民乐团扒谱机1 小时前
【读论文】新冠肺炎疫情期间家庭虚拟现实产品对情绪的影响:一项语义网络分析
matlab·vr
某空m1 小时前
【Android】浅析DataBinding
android·开发语言