直方图与模板匹配

import cv2 #opencv读取的格式是BGR

import numpy as np

import matplotlib.pyplot as plt#Matplotlib是RGB

%matplotlib inline

def cv_show(img,name):

cv2.imshow(name,img)

cv2.waitKey()

cv2.destroyAllWindows()

直方图

cv2.calcHist(images,channels,mask,histSize,ranges)
  • images: 原图像图像格式为 uint8 或 float32。当传入函数时应 用中括号 [] 括来例如[img]
  • channels: 同样用中括号括来它会告函数我们统幅图 像的直方图。如果入图像是灰度图它的值就是 [0]如果是彩色图像 的传入的参数可以是 [0][1][2] 它们分别对应着 BGR。
  • mask: 掩模图像。统整幅图像的直方图就把它为 None。但是如 果你想统图像某一分的直方图的你就制作一个掩模图像并 使用它。
  • histSize:BIN 的数目。也应用中括号括来
  • ranges: 像素值范围常为 [0256]

img = cv2.imread('cat.jpg',0) #0表示灰度图

hist = cv2.calcHist([img],[0],None,[256],[0,256])

hist.shape

输出:(256, 1)

plt.hist(img.ravel(),256);

plt.show()

img = cv2.imread('cat.jpg')

color = ('b','g','r')

for i,col in enumerate(color):

histr = cv2.calcHist([img],[i],None,[256],[0,256])

plt.plot(histr,color = col)

plt.xlim([0,256])

mask操作

#创建mast

mask = np.zeros(img.shape[:2], np.uint8)

print (mask.shape)

mask[100:300, 100:400] = 255

cv_show(mask,'mask')

输出:(414, 500)

img = cv2.imread('cat.jpg', 0)

cv_show(img,'img')

masked_img = cv2.bitwise_and(img, img, mask=mask)#与操作

cv_show(masked_img,'masked_img')

hist_full = cv2.calcHist([img], [0], None, [256], [0, 256])

hist_mask = cv2.calcHist([img], [0], mask, [256], [0, 256])

plt.subplot(221), plt.imshow(img, 'gray')

plt.subplot(222), plt.imshow(mask, 'gray')

plt.subplot(223), plt.imshow(masked_img, 'gray')

plt.subplot(224), plt.plot(hist_full), plt.plot(hist_mask)

plt.xlim([0, 256])

plt.show()

直方图均衡化



img = cv2.imread('clahe.jpg',0) #0表示灰度图 #clahe

plt.hist(img.ravel(),256);

plt.show()

equ = cv2.equalizeHist(img)

plt.hist(equ.ravel(),256)

plt.show()

res = np.hstack((img,equ))

cv_show(res,'res')

自适应直方图均衡化

clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))

res_clahe = clahe.apply(img)

res = np.hstack((img,equ,res_clahe))

cv_show(res,'res')

模板匹配

模板匹配和卷积原理很像,模板在原图像上从原点开始滑动,计算模板与(图像被模板覆盖的地方)的差别程度,这个差别程度的计算方法在opencv里有6种,然后将每次计算的结果放入一个矩阵里,作为结果输出。假如原图形是AxB大小,而模板是axb大小,则输出结果的矩阵是(A-a+1)x(B-b+1)

#模板匹配

img = cv2.imread('lena.jpg', 0)

template = cv2.imread('face.jpg', 0)

h, w = template.shape[:2]

img.shape

输出:(263, 263)

template.shape

输出:(110, 85)

  • TM_SQDIFF:计算平方不同,计算出来的值越小,越相关
  • TM_CCORR:计算相关性,计算出来的值越大,越相关
  • TM_CCOEFF:计算相关系数,计算出来的值越大,越相关
  • TM_SQDIFF_NORMED:计算归一化平方不同,计算出来的值越接近0,越相关
  • TM_CCORR_NORMED:计算归一化相关性,计算出来的值越接近1,越相关
  • TM_CCOEFF_NORMED:计算归一化相关系数,计算出来的值越接近1,越相关

公式:https://docs.opencv.org/3.3.1/df/dfb/group__imgproc__object.html#ga3a7850640f1fe1f58fe91a2d7583695d

methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR',

'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']

res = cv2.matchTemplate(img, template, cv2.TM_SQDIFF)

res.shape

输出:(154, 179)

min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)

min_val

输出:39168.0

max_val

输出:74403584.0

min_loc

输出:(107, 89)

max_loc

输出:(159, 62)

for meth in methods:

img2 = img.copy()

复制代码
#匹配方法的真值
method = eval(meth)
print (method)
res = cv2.matchTemplate(img, template, method)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)

#如果是平方差匹配TM_SQDIFF或归一化平方差匹配TM_SQDIFF_NORMED,取最小值
if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
    top_left = min_loc
else:
    top_left = max_loc
bottom_right = (top_left[0] + w, top_left[1] + h)

#画矩形
cv2.rectangle(img2, top_left, bottom_right, 255, 2)

plt.subplot(121), plt.imshow(res, cmap='gray')
plt.xticks([]), plt.yticks([])  # 隐藏坐标轴
plt.subplot(122), plt.imshow(img2, cmap='gray')
plt.xticks([]), plt.yticks([])
plt.suptitle(meth)
plt.show()

输出:4

5

2

3

0

1

匹配多个对象

img_rgb = cv2.imread('mario.jpg')

img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)

template = cv2.imread('mario_coin.jpg', 0)

h, w = template.shape[:2]

res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)

threshold = 0.8

#取匹配程度大于%80的坐标

loc = np.where(res >= threshold)

for pt in zip(*loc[::-1]): #*号表示可选参数

bottom_right = (pt[0] + w, pt[1] + h)

cv2.rectangle(img_rgb, pt, bottom_right, (0, 0, 255), 2)

cv2.imshow('img_rgb', img_rgb)

cv2.waitKey(0)

输出:-1

相关推荐
是小蟹呀^10 小时前
从稀疏到自适应:人脸识别中稀疏表示的核心演进
人工智能·分类
AAD5558889921 小时前
YOLO11-EfficientRepBiPAN载重汽车轮胎热成像检测与分类_3
人工智能·分类·数据挖掘
小徐xxx1 天前
Softmax回归(分类问题)学习记录
深度学习·分类·回归·softmax·学习记录
AAD555888991 天前
YOLOv8-MAN-Faster电容器缺陷检测:七类组件识别与分类系统
yolo·分类·数据挖掘
JicasdC123asd1 天前
【工业检测】基于YOLO13-C3k2-EIEM的铸造缺陷检测与分类系统_1
人工智能·算法·分类
子夜江寒1 天前
基于 LSTM 的中文情感分类项目解析
人工智能·分类·lstm
是小蟹呀^1 天前
Focal Loss:解决长尾图像分类中“多数类太强势”的损失函数
人工智能·机器学习·分类
2501_941329721 天前
基于Centernet的甜菜幼苗生长状态识别与分类系统
人工智能·分类·数据挖掘
Daydream.V1 天前
决策树三中分类标准
算法·决策树·分类
ZCXZ12385296a1 天前
【实战案例】基于YOLOv8的亚洲107种鸟类图像分类与目标检测系统_2
yolo·目标检测·分类