AWS中国云中的ETL之从aurora搬数据到s3(Glue版——修复版)

问题

AWS中国云中的ETL之从aurora搬数据到s3(Glue版)

之前这个方式,在数据比较大的情况下,会出现对mysql全表扫描问题。

解决思路

使用JDBC下推方式,避免对mysql取数的全表扫描。

解决

将可视化ETL改成脚本方式:具体代码如下:

python 复制代码
import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job
from awsgluedq.transforms import EvaluateDataQuality
from awsglue import DynamicFrame

def sparkSqlQuery(glueContext, query, mapping, transformation_ctx) -> DynamicFrame:
    for alias, frame in mapping.items():
        frame.toDF().createOrReplaceTempView(alias)
    result = spark.sql(query)
    return DynamicFrame.fromDF(result, glueContext, transformation_ctx)
args = getResolvedOptions(sys.argv, ['JOB_NAME'])
sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session
job = Job(glueContext)
job.init(args['JOB_NAME'], args)

# Default ruleset used by all target nodes with data quality enabled
DEFAULT_DATA_QUALITY_RULESET = """
    Rules = [
        ColumnCount > 0
    ]
"""

sampleQuery = '''
select track_id,
    distinct_id,
    lib,
    event,
    type,
    all_json,
    host,
    user_agent,
    ua_platform,
    ua_browser,
    ua_version,
    ua_language,
    connection,
    pragma,
    cache_control,
    accept,
    accept_encoding,
    accept_language,
    ip,
    ip_city,
    ip_asn,
    url,
    referrer,
    remark,
    created_at,
    date,
    hour
from xxxx
where date = CURDATE() and
'''.rstrip('\n')

# Script generated for node prod-mysql
prodmysql_node202512354346 = glueContext.create_dynamic_frame.from_options(
    connection_type = "mysql",
    connection_options = {
        "useConnectionProperties": "true",
        "dbtable": "xxxx",
        "connectionName": "prod Aurora connection",
        "sampleQuery": sampleQuery,
        # 启用JDBC下推
        "enablePartitioningForSampleQuery": True,
        # 按小时字段分区
        "hashfield": "hour",
        "hashpartitions": "24"
    },
    transformation_ctx = "prodmysql_node202512354346"
)

# Script generated for node SQL Query xxxx
SqlQuery68 = '''
select track_id,
    distinct_id,
    lib,
    event,
    type,
    all_json,
    host,
    user_agent,
    ua_platform,
    ua_browser,
    ua_version,
    ua_language,
    connection,
    pragma,
    cache_control,
    accept,
    accept_encoding,
    accept_language,
    ip,
    ip_city,
    ip_asn,
    url,
    referrer,
    remark,
    created_at,
    date,
    hour,
    YEAR(date) AS year,
    MONTH(date) AS month,
    DAY(date) AS day 
from xxxx 
where date = CURDATE();
'''
SQLQueryxxxx_node20251236978987 = sparkSqlQuery(glueContext, query = SqlQuery68, mapping = {"xxxx":prodmysql_node202512354346}, transformation_ctx = "SQLQueryxxxx_node20251236978987")

# Script generated for node Amazon S3 xxxx
EvaluateDataQuality().process_rows(frame=SQLQueryxxxx_node20251236978987, ruleset=DEFAULT_DATA_QUALITY_RULESET, publishing_options={"dataQualityEvaluationContext": "EvaluateDataQuality_node1758699684078", "enableDataQualityResultsPublishing": True}, additional_options={"dataQualityResultsPublishing.strategy": "BEST_EFFORT", "observations.scope": "ALL"})
# AmazonS3xxxx_node1758699703229 = glueContext.write_dynamic_frame.from_options(frame=SQLQueryxxxx_node20251236978987, connection_type="s3", format="glueparquet", connection_options={"path": "s3://aws-glue-prod-xxxx", "partitionKeys": ["year", "month", "day"]}, format_options={"compression": "snappy"}, transformation_ctx="AmazonS3xxxx_node1758699703229")

additionalOptions = {
    "enableUpdateCatalog": True
}
# 自动添加给表分区,记得给表添加属性useGlueParquetWriter为true
additionalOptions["partitionKeys"] = ["year", "month", "day"]

write_sink = glueContext.write_dynamic_frame_from_catalog(
    frame=SQLQueryxxxx_node20251236978987, 
    database="prod", 
    table_name="aws_glue_prod_xxxx", 
    transformation_ctx="write_sink",
    additional_options=additionalOptions
)

job.commit()

注意在运行之前,记得给表添加属性useGlueParquetWriter为true。

参考

相关推荐
2501_946242932 小时前
MPV-EASY Player (MPV播放器) v0.41.0.1
数据库·经验分享·云计算·计算机外设·github·电脑·csdn开发云
zgl_200537797 小时前
ZGLanguage 解析SQL数据血缘 之 提取select语句中的源表名
大数据·数据库·c++·数据仓库·sql·数据库开发·etl
在云上(oncloudai)11 小时前
AWS 成本异常检测(AWS Cost Anomaly Detection)全解析
aws·亚马逊云科技
bluetata11 小时前
Spring AI 使用 AWS Amazon Nova 模型
人工智能·spring·aws
easy_coder11 小时前
从“未知故障”到“自治诊断”:基于双路召回与RAG的智能诊断系统构建
人工智能·云原生·云计算
翼龙云_cloud13 小时前
腾讯云渠道商:如何在腾讯云服务器上搭建一个属于自己的网站或者论坛?
运维·服务器·云计算·腾讯云
wa的一声哭了13 小时前
矩阵分析 单元函数矩阵微积分和多元向量值的导数
linux·c语言·c++·线性代数·算法·矩阵·云计算
冬天的风滚草14 小时前
揭秘云原生混布资源调度器Koordinator (十)ResourceExecutor 执行引擎
云计算
一颗小青松14 小时前
uniapp vue3中app端使用腾讯云点播上传
uni-app·云计算·腾讯云
HelloWorld__K15 小时前
整合阿里云短信服务
数据库·阿里云·云计算