文章目录
- [Topic 1: log z \log z logz](#Topic 1: log z \log z logz)
- [Topic 2: 无穷乘积(Infinite Product)](#Topic 2: 无穷乘积(Infinite Product))
- [Topic 3: Gamma函数](#Topic 3: Gamma函数)
Topic 1: log z \log z logz
log z \log z logz可以写为 log ∣ z ∣ + i Arg z \log |z| + i\text{Arg}z log∣z∣+iArgz,若 z z z写成 r e i θ , θ ∈ ( − π , π ] re^{i\theta}, \theta \in (-\pi, \pi] reiθ,θ∈(−π,π],则 log z = log r + i θ \log z = \log r + i\theta logz=logr+iθ
解析区域
log z \log z logz在 U : = { r e i θ , − π < θ < π , r > 0 } U:= \set{re^{i\theta}, -\pi < \theta < \pi, r >0} U:={reiθ,−π<θ<π,r>0}上是全纯的,也就是 log ( 1 + z ) \log(1+z) log(1+z)在 D \mathbb{D} D上全纯。这是因为当 ∣ z ∣ < 1 |z| < 1 ∣z∣<1,
log ( 1 + z ) = z − 1 2 z 2 + 1 3 z 3 − . . . \log (1+z) = z - \frac{1}{2}z^2 + \frac{1}{3}z^3 - ... log(1+z)=z−21z2+31z3−...
引理1
∃ δ > 0 , ∀ ∣ z ∣ < δ \exist \delta > 0, \forall |z| < \delta ∃δ>0,∀∣z∣<δ,有:
1 2 ( n + 1 ) ∣ z ∣ a + 1 ≤ ∣ log ( 1 − z ) + ∑ n k = 1 1 k z k ∣ ≤ 2 n + 1 ∣ z ∣ n + 1 \frac{1}{2(n+1)}|z|^{a+1} \le \left|\log (1-z) + \underset{k=1}{\overset{n}{\sum}}\frac{1}{k} z^k\right| \le \frac{2}{n+1}|z|^{n+1} 2(n+1)1∣z∣a+1≤ log(1−z)+k=1∑nk1zk ≤n+12∣z∣n+1
Topic 2: 无穷乘积(Infinite Product)
下面讨论如何构造一个"处处收敛"的无穷乘积函数,其零点正好是给定序列 { a n } \set{a_n} {an}
设 a 1 , . . . , a n , . . . a_1, ..., a_n, ... a1,...,an,...是一个序列, a n → ∞ a_n \to \infty an→∞,则
- ∏ ∞ n = 1 ( 1 − z a n ) exp ( ∑ n k = 1 1 k ( z a n ) k ) \underset{n=1}{\overset{\infty}{\prod}}(1-\frac{z}{a_n})\exp\left(\underset{k=1}{\overset{n}{\sum}}\frac{1}{k}\left(\frac{z}{a_n}\right)^k\right) n=1∏∞(1−anz)exp(k=1∑nk1(anz)k)在 C \mathbb{C} C上局部一致收敛
- 固定 h ∈ N h \in \mathbb{N} h∈N, ∏ ∞ n = 1 ( 1 − z a n ) exp ( ∑ h k = 1 1 k ( z a n ) k ) \underset{n=1}{\overset{\infty}{\prod}}(1-\frac{z}{a_n})\exp\left(\underset{k=1}{\overset{h}{\sum}}\frac{1}{k}\left(\frac{z}{a_n}\right)^k\right) n=1∏∞(1−anz)exp(k=1∑hk1(anz)k)在 C \mathbb{C} C上局部一致收敛,当且仅当
∑ ∞ n = 1 1 ∣ a n ∣ h + 1 < ∞ \underset{n=1}{\overset{\infty}{\sum}}\frac{1}{|a_n|^{h+1}} < \infty n=1∑∞∣an∣h+11<∞
证明:
- 只要证 ∑ ∞ n = 1 ( log ( 1 − z a n ) + ∑ n k = 1 1 k ( z a n ) k ) \underset{n=1}{\overset{\infty}{\sum}}\left(\log(1-\frac{z}{a_n}) + \underset{k=1}{\overset{n}{\sum}}\frac{1}{k}(\frac{z}{a_n})^k\right) n=1∑∞(log(1−anz)+k=1∑nk1(anz)k)收敛。当 n → ∞ n \to \infty n→∞, ∣ z a n ∣ ≤ 1 2 \left|\frac{z}{a_n}\right| \le \frac{1}{2} anz ≤21,所以
∣ log ( 1 − z a n ) + ∑ n k = 1 1 k ( z a n ) k ∣ ≤ 2 n + 1 ∣ z a n ∣ n + 1 ≤ 1 2 n + 1 \left|\log(1-\frac{z}{a_n}) + \underset{k=1}{\overset{n}{\sum}}\frac{1}{k}(\frac{z}{a_n})^k\right| \le \frac{2}{n+1}\left|\frac{z}{a_n}\right|^{n+1} \le \frac{1}{2^{n+1}} log(1−anz)+k=1∑nk1(anz)k ≤n+12 anz n+1≤2n+11 - 。。。
定理:Weierstrass
设 f f f是一个整函数(entire), f f f不是常值函数。设 a 1 , . . . , a n , . . . a_1, ..., a_n, ... a1,...,an,...是 f f f在 C ∗ \mathbb{C}^* C∗上的零点(记重数), m m m是 0 0 0处的重数。
则存在一个整函数 g : C → C g: \mathbb{C} \to \mathbb{C} g:C→C,满足
f ( z ) = z m e g ( z ) ∏ ∞ n = 1 ( 1 − z a n ) exp ( ∑ n k = 1 1 k ( z a n ) k ) f(z) = z^m e^{g(z)} \underset{n=1}{\overset{\infty}{\prod}}(1-\frac{z}{a_n})\exp\left(\underset{k=1}{\overset{n}{\sum}}\frac{1}{k}\left(\frac{z}{a_n}\right)^k\right) f(z)=zmeg(z)n=1∏∞(1−anz)exp(k=1∑nk1(anz)k)
证明:
假设 # { a n } = ∞ \#\set{a_n} = \infty #{an}=∞,则 a n → ∞ a_n \to \infty an→∞
h ( z ) = z m ∏ ∞ n = 1 ( 1 − z a n ) exp ( ∑ n k = 1 1 k ( z a n ) k ) h(z) = z^m \underset{n=1}{\overset{\infty}{\prod}}(1-\frac{z}{a_n})\exp\left(\underset{k=1}{\overset{n}{\sum}}\frac{1}{k}\left(\frac{z}{a_n}\right)^k\right) h(z)=zmn=1∏∞(1−anz)exp(k=1∑nk1(anz)k)
是一个整函数。
f ( z ) h ( z ) \frac{f(z)}{h(z)} h(z)f(z)是一个 C → C ∗ \mathbb{C} \to \mathbb{C}^* C→C∗是一个整函数。
则存在整函数 g : C → C g: \mathbb{C} \to \mathbb{C} g:C→C,满足 f ( z ) h ( z ) = exp g ( z ) \frac{f(z)}{h(z)} = \exp g(z) h(z)f(z)=expg(z),于是 f ( z ) = e g ( z ) h ( z ) f(z) = e^{g(z)}h(z) f(z)=eg(z)h(z)
定义
设 f f f是一个非常值的整函数。设 a 1 , . . . , a n , . . . a_1, ..., a_n, ... a1,...,an,...是 f f f在 C ∗ \mathbb{C}^* C∗上的零点。设 h h h满足
∑ 1 ∣ a n ∣ h + 1 < ∞ \sum \frac{1}{|a_n|^{h+1}} < \infty ∑∣an∣h+11<∞
最小的这样的 h h h被称为 f f f的亏格(genus)
当亏格有限,存在整函数 g ( z ) g(z) g(z)使得
f ( z ) = z m e g ( z ) ∏ ∞ n = 1 ( 1 − z a n ) exp ( ∑ n k = 1 1 k ( z a n ) k ) f(z) = z^m e^{g(z)} \underset{n=1}{\overset{\infty}{\prod}}(1-\frac{z}{a_n})\exp\left(\underset{k=1}{\overset{n}{\sum}}\frac{1}{k}\left(\frac{z}{a_n}\right)^k\right) f(z)=zmeg(z)n=1∏∞(1−anz)exp(k=1∑nk1(anz)k)
这样的展开被称为 f f f的典范乘积(canonical product)
例子
f ( z ) = sin π z f(z) = \sin \pi z f(z)=sinπz, { f = 0 } = N \set{f=0} = \mathbb{N} {f=0}=N, a n = n a_n = n an=n
∑ 1 ∣ a n ∣ = ∞ \sum \frac{1}{|a_n|} = \infty ∑∣an∣1=∞, ∑ 1 ∣ a n ∣ 2 < ∞ \sum \frac{1}{|a_n|^2}<\infty ∑∣an∣21<∞,于是 h = 1 h = 1 h=1
sin ( π z ) = π z ∏ n ≠ 0 ( 1 − z n ) exp ( z n ) = π z ∏ ∞ n = 1 ( 1 − z 2 n 2 ) π cot π z = 1 z + ∑ ∞ n = 1 2 z z 2 − n 2 \sin(\pi z) = \pi z \underset{n\neq 0}{\prod}(1-\frac{z}{n})\exp(\frac{z}{n}) = \pi z \underset{n=1}{\overset{\infty}{\prod}}(1-\frac{z^2}{n^2}) \\ \pi \cot \pi z = \frac{1}{z} + \underset{n=1}{\overset{\infty}{\sum}}\frac{2z}{z^2 - n^2} sin(πz)=πzn=0∏(1−nz)exp(nz)=πzn=1∏∞(1−n2z2)πcotπz=z1+n=1∑∞z2−n22z
Topic 3: Gamma函数
设
G ( z ) = ∏ ∞ n = 1 ( 1 + z n ) exp ( z n ) G(z) = \underset{n=1}{\overset{\infty}{\prod}} (1+\frac{z}{n})\exp(\frac{z}{n}) G(z)=n=1∏∞(1+nz)exp(nz)
则有:
{ G ( z ) = 0 } = { − 1 , − 2 , − 3 , . . . } π G ( z ) G ( − z ) = sin π z \set{G(z) = 0} = \set{-1, -2, -3, ...} \\ \pi G(z)G(-z) = \sin \pi z {G(z)=0}={−1,−2,−3,...}πG(z)G(−z)=sinπz
利用 两个具有相同零点结构的整函数之比是一个整函数。 ,可以设:
G ( z − 1 ) = z G ( z ) e γ ( z ) G(z-1) = z G(z)e^{\gamma(z)} G(z−1)=zG(z)eγ(z)
其中 γ : C → C \gamma: \mathbb{C} \to \mathbb{C} γ:C→C是整函数。于是
log G ( z − 1 ) = log z + γ ( z ) + log G ( z ) ∑ ∞ n = 1 ( log ( 1 + z − 1 n ) − z − 1 n ) = log z + γ ( z ) + ∑ ∞ n = 1 ( log ( 1 + z n ) − z n ) \log G(z-1) = \log z + \gamma(z) + \log G(z) \\ \underset{n=1}{\overset{\infty}{\sum}}\left(\log(1+\frac{z-1}{n}) - \frac{z-1}{n}\right) =\log z + \gamma(z) + \underset{n=1}{\overset{\infty}{\sum}} \left(\log(1+\frac{z}{n})-\frac{z}{n}\right) logG(z−1)=logz+γ(z)+logG(z)n=1∑∞(log(1+nz−1)−nz−1)=logz+γ(z)+n=1∑∞(log(1+nz)−nz)
两边同时求导:
γ ′ ( z ) = 0 \gamma'(z) = 0 γ′(z)=0
所以 γ \gamma γ是常值函数。
取 z = 1 z = 1 z=1,可以解得
− γ = lim n → ∞ log ( n + 1 ) − ( 1 + 1 2 + . . . + 1 n ) -\gamma = \underset{n \to \infty}{\lim} \log (n+1) - (1 + \frac{1}{2} + ... + \frac{1}{n}) −γ=n→∞limlog(n+1)−(1+21+...+n1)
这里 γ \gamma γ称为欧拉常数, γ ≈ 0.57722 \gamma \approx 0.57722 γ≈0.57722
考虑函数
Γ ( z ) = 1 z G ( z ) e γ z \Gamma(z) = \frac{1}{zG(z)e^{\gamma z}} Γ(z)=zG(z)eγz1则有 Γ ( z + 1 ) = z Γ ( z ) \Gamma(z+1) = z\Gamma(z) Γ(z+1)=zΓ(z)
由定义:
Γ ( z ) = e γ z z ∏ ∞ n = 1 ( 1 + z n ) − 1 e z n \Gamma(z) = \frac{e^{\gamma z}}{z} \underset{n=1}{\overset{\infty}{\prod}}\left(1+\frac{z}{n}\right)^{-1} e^{\frac{z}{n}} Γ(z)=zeγzn=1∏∞(1+nz)−1enz
这是 C \mathbb{C} C上的亚纯函数,它有简单极点 { 0 , − 1 , − 2 , . . . } \set{0, -1, -2, ...} {0,−1,−2,...},没有零点,我们有:
Γ ( z ) Γ ( 1 − z ) = π sin ( π z ) Γ ( n ) = n ! , n ∈ N \Gamma(z) \Gamma(1-z) = \frac{\pi}{\sin(\pi z)} \\ \Gamma(n) = n!, n \in \mathbb{N} Γ(z)Γ(1−z)=sin(πz)πΓ(n)=n!,n∈N