pytesseract 中英文 识别图片文字

要使用 pytesseract 识别图片文字,你需要先安装 Tesseract OCR引擎 和 Pillow库,然后通过几行 Python 代码导入库、加载图片,并调用 image_to_string() 函数进行识别,传入图片路径和指定语言 (如 'eng' 或 'chi_sim') 即可获得文本内容。

步骤 1: 安装 Tesseract OCR引擎

这是核心部分,需要安装在你的操作系统上,而不是Python库里。

Windows/macOS: 前往 Tesseract-OCR GitHub Releases页面 (或其他官方源) 下载并安装对应版本。

Linux (Debian/Ubuntu): 运行:

bash 复制代码
sudo apt install tesseract-ocr

安装语言包: 如果需要识别中文,同时安装中文语言包,例如在Linux上是:

bash 复制代码
sudo apt install tesseract-ocr-chi-sim
# 或 centos
sudo yum install tesseract-ocr-chi-sim

步骤 2: 安装 Python库

安装 Pillow (PIL): pip install Pillow

bash 复制代码
pip install Pillow

安装 pytesseract: pip install pytesseract

bash 复制代码
pip install pytesseract

步骤 3: 编写 Python代码

python 复制代码
import pytesseract
from PIL import Image

# ----------------------------------------------------------
# Windows用户: 如果Tesseract不在系统PATH中,需要指定其路径
# 例如: pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'
# ----------------------------------------------------------

def ocr_image_to_text(image_path, language='eng'):
    """
    使用 pytesseract 从图片中提取文字。
    :param image_path: 图片文件路径
    :param language: 识别的语言 (如 'eng' 英文, 'chi_sim' 简体中文)
    :return: 识别出的文字
    """
    try:
        # 1. 使用Pillow打开图片
        img = Image.open(image_path)

        # 2. 使用pytesseract进行OCR识别
        
        # 设置环境变量(只在当前会话中有效)
    		  pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'  # 示例路径
        pytesseract.pytesseract.tessdata_dir_config = r'C:\Program Files\Tesseract-OCR\tessdata'  # 示例路径
      # lang参数指定语言包
      # 或者在调用时直接指定
      text = pytesseract.image_to_string(Image.open(image_path), lang=language, config="C:\Program Files\Tesseract-OCR\\tessdata"))

        return text
    except FileNotFoundError:
        return f"错误: 找不到文件 {image_path}"
    except Exception as e:
        return f"识别时发生错误: {e}"

# --- 示例用法 ---
if __name__ == '__main__':
    # 假设你的图片名为 'example.png' 且在同一目录下
    # 并且安装了中文语言包 'chi_sim'
    image_file = 'example.png' # <-- 替换成你的图片路径

    # 识别英文
    english_text = ocr_image_to_text(image_file, language='eng')
    print("--- 英文识别结果 ---")
    print(english_text)

    # 识别简体中文 (需要安装 'chi_sim' 语言包)
    chinese_text = ocr_image_to_text(image_file, language='chi_sim')
    print("\n--- 中文识别结果 ---")
    print(chinese_text)

    # 如果是混合语言,可以尝试 'eng+chi_sim'
    mixed_text = ocr_image_to_text(image_file, language='eng+chi_sim')
    print("\n--- 混合语言识别结果 ---")
    print(mixed_text)

步骤 4、报错提示找不到chi_sim语言

请下载:https://github.com/tesseract-ocr/tessdata,把 chi_sim.traineddata 下载后的文件放在 C:\Program Files\Tesseract-OCR\tessdata 文件夹下面。然后运行完整代码,可正常识别中文文字。

相关推荐
田里的水稻7 小时前
C++_python_相互之间的包含调用方法
c++·chrome·python
2501_941870567 小时前
面向微服务熔断与流量削峰策略的互联网系统稳定性设计与多语言工程实践分享
开发语言·python
GIS之路8 小时前
GDAL 实现矢量裁剪
前端·python·信息可视化
IT=>小脑虎8 小时前
Python零基础衔接进阶知识点【详解版】
开发语言·人工智能·python
智航GIS8 小时前
10.6 Scrapy:Python 网页爬取框架
python·scrapy·信息可视化
清水白石0089 小时前
解构异步编程的两种哲学:从 asyncio 到 Trio,理解 Nursery 的魔力
运维·服务器·数据库·python
山海青风9 小时前
图像识别零基础实战入门 1 计算机如何“看”一张图片
图像处理·python
彼岸花开了吗9 小时前
构建AI智能体:八十、SVD知识整理与降维:从数据混沌到语义秩序的智能转换
人工智能·python·llm
山土成旧客10 小时前
【Python学习打卡-Day40】从“能跑就行”到“工程标准”:PyTorch训练与测试的规范化写法
pytorch·python·学习
闲人编程10 小时前
消息通知系统实现:构建高可用、可扩展的企业级通知服务
java·服务器·网络·python·消息队列·异步处理·分发器