AI中的优化7-有约束非线性规划

核心理论 (Core Theory)

拉格朗日函数 (Lagrangian): 通过引入拉格朗日乘子,将一个带约束问题转化为一个无约束的函数,是连接原始问题和对偶问题的桥梁。

KKT 条件 (Karush-Kuhn-Tucker Conditions): 这是约束优化最优性条件的"黄金标准",它将拉格朗日乘子法推广到了包含不等式约束的一般情况。它包含四个部分:

▪ 驻点性 (Stationarity)

▪ 原始可行性 (Primal Feasibility)

▪ 对偶可行性 (Dual Feasibility)

▪ 互补松弛性 (Complementarity)

对偶性 (Duality): 通过构造对偶问题,为原始问题提供一个下界(弱对偶),在某些条件下甚至可以得到与原始问题相同的解(强对偶),从而开辟了全新的求解路径。

核心算法 (Core Algorithms)

投影梯度法 (Projected Gradient Method): 梯度下降法在约束问题上的直接推广,适用于可行集结构简单、投影计算廉价的场景。

交替方向乘子法 (ADMM): 一个强大的分解协调算法,特别适用于目标函数或约束具有可分离结构的复杂大规模问题,在分布式计算和现代机器学习中扮演着重要角色。

应用 (Application)

支持向量机 (Support Vector Machines, SVM): 作为一个经典的机器学习模型,SVM的推导和求解完美地展示了KKT条件和对偶理论的强大威力。

一、 KKT 条件 (Karush-Kuhn-Tucker Condition)

二、 案例:支持向量机

三、 投影梯度法 (Projected Gradient Method)

四、 交替方向乘子法 (Alternating Direction Method of Multipliers)

相关推荐
聆风吟º2 分钟前
CANN算子开发:ops-nn神经网络算子库的技术解析与实战应用
人工智能·深度学习·神经网络·cann
偷吃的耗子7 分钟前
【CNN算法理解】:CNN平移不变性详解:数学原理与实例
人工智能·算法·cnn
勾股导航7 分钟前
OpenCV图像坐标系
人工智能·opencv·计算机视觉
神的泪水9 分钟前
CANN 生态实战:`msprof-performance-analyzer` 如何精准定位 AI 应用性能瓶颈
人工智能
芷栀夏9 分钟前
深度解析 CANN 异构计算架构:基于 ACL API 的算子调用实战
运维·人工智能·开源·cann
威迪斯特9 分钟前
项目解决方案:医药生产车间AI识别建设解决方案
人工智能·ai实时识别·视频实时识别·识别盒子·识别数据分析·项目解决方案
笔画人生10 分钟前
# 探索 CANN 生态:深入解析 `ops-transformer` 项目
人工智能·深度学习·transformer
feasibility.11 分钟前
AI 编程助手进阶指南:从 Claude Code 到 OpenCode 的工程化经验总结
人工智能·经验分享·设计模式·自动化·agi·skills·opencode
程序猿追11 分钟前
深度剖析 CANN ops-nn 算子库:架构设计、演进与代码实现逻辑
人工智能·架构
灰灰勇闯IT14 分钟前
领域制胜——CANN 领域加速库(ascend-transformer-boost)的场景化优化
人工智能·深度学习·transformer