AI中的优化7-有约束非线性规划

核心理论 (Core Theory)

拉格朗日函数 (Lagrangian): 通过引入拉格朗日乘子,将一个带约束问题转化为一个无约束的函数,是连接原始问题和对偶问题的桥梁。

KKT 条件 (Karush-Kuhn-Tucker Conditions): 这是约束优化最优性条件的"黄金标准",它将拉格朗日乘子法推广到了包含不等式约束的一般情况。它包含四个部分:

▪ 驻点性 (Stationarity)

▪ 原始可行性 (Primal Feasibility)

▪ 对偶可行性 (Dual Feasibility)

▪ 互补松弛性 (Complementarity)

对偶性 (Duality): 通过构造对偶问题,为原始问题提供一个下界(弱对偶),在某些条件下甚至可以得到与原始问题相同的解(强对偶),从而开辟了全新的求解路径。

核心算法 (Core Algorithms)

投影梯度法 (Projected Gradient Method): 梯度下降法在约束问题上的直接推广,适用于可行集结构简单、投影计算廉价的场景。

交替方向乘子法 (ADMM): 一个强大的分解协调算法,特别适用于目标函数或约束具有可分离结构的复杂大规模问题,在分布式计算和现代机器学习中扮演着重要角色。

应用 (Application)

支持向量机 (Support Vector Machines, SVM): 作为一个经典的机器学习模型,SVM的推导和求解完美地展示了KKT条件和对偶理论的强大威力。

一、 KKT 条件 (Karush-Kuhn-Tucker Condition)

二、 案例:支持向量机

三、 投影梯度法 (Projected Gradient Method)

四、 交替方向乘子法 (Alternating Direction Method of Multipliers)

相关推荐
Christo36 小时前
TFS-2026《Fuzzy Multi-Subspace Clustering 》
人工智能·算法·机器学习·数据挖掘
五点钟科技6 小时前
Deepseek-OCR:《DeepSeek-OCR: Contexts Optical Compression》 论文要点解读
人工智能·llm·ocr·论文·大语言模型·deepseek·deepseek-ocr
人工智能AI技术6 小时前
【C#程序员入门AI】本地大模型落地:用Ollama+C#在本地运行Llama 3/Phi-3,无需云端
人工智能·c#
Agentcometoo7 小时前
智能体来了从 0 到 1:规则、流程与模型的工程化协作顺序
人工智能·从0到1·智能体来了·时代趋势
工程师老罗7 小时前
什么是目标检测?
人工智能·目标检测·计算机视觉
jarreyer7 小时前
【AI 编程工具】
人工智能·编程工具
阿杰学AI7 小时前
AI核心知识75——大语言模型之MAS (简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·agent·多智能体协作·mas
小程故事多_807 小时前
深度搜索Agent架构全解析:从入门到进阶,解锁复杂问题求解密码
人工智能·架构·aigc
朴实赋能7 小时前
AI赋能文旅出海:智矩引擎(MatriPower)社媒矩阵破局与流量长效增长实操指南
人工智能·社媒矩阵·matripower·文旅出海·海外社媒引流·文旅ip出海·智矩引擎
许泽宇的技术分享7 小时前
第 1 章:认识 Claude Code
开发语言·人工智能·python