环境
系统:CentOS-7
CPU : E5-2680V4 14核28线程
内存:DDR4 2133 32G * 2
显卡:Tesla V100-32G【PG503】 (水冷)
驱动: 535
CUDA: 12.2
ComfyUI version: 0.4.0
ComfyUI frontend version: 1.34.8
系统软件信息
系统信息
OS
linux
Python Version
3.12.12 | packaged by Anaconda, Inc. | (main, Oct 21 2025, 20:16:04) [GCC 11.2.0]
Embedded Python
false
Pytorch Version
2.9.1+cu128
Arguments
main.py --listen --port 8188 --cuda-malloc --lowvram
RAM Total
62.68 GB
RAM Free
60.25 GB
启动
bash
python main.py --listen --port 8188 --cuda-malloc --lowvram
参考
基于ComfyUI的Flux Schnell案例修改模型为GGUF加载器
[第五十九篇-ComfyUI+V100-32G+运行Flux Schnell-CSDN博客](https://blog.csdn.net/hai4321/article/details/155953374)
ComfyUI安装GGUF支持
进入你看着ComfyUI目录的custom_nodes
cd ComfyUI/custom_nodes
克隆代码
git clone https://github.com/city96/ComfyUI-GGUF
安装依赖
pip install -r requirements.txt
重启ComfyUI
下载GGUF模型
放入ComfyUI/models/unet文件夹中
调整模型加载器
删除Setp1 UNet加载器

添加【节点库】--》【UnetLoader(GGUF)】-》【选择flux1-schnell-Q4_K_S.gguf】

Flux Schnell完整版文生图
保存工作流
Ctrl+S
运行结果

第一次时间长一点
参数
1024*1024
时间
bash
gguf qtypes: F32 (468), Q4_K (304), F16 (4)
model weight dtype torch.float16, manual cast: None
model_type FLOW
Requested to load Flux
loaded completely; 30387.70 MB usable, 6595.58 MB loaded, full load: True
100%|███████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:06<00:00, 1.69s/it]
Prompt executed in 11.09 seconds
got prompt
100%|███████████████████████████████████████████████████████████| 4/4 [00:06<00:00, 1.70s/it]
Prompt executed in 7.59 seconds
got prompt
100%|███████████████████████████████████████████████████████████| 4/4 [00:06<00:00, 1.70s/it]
Prompt executed in 7.61 seconds
GPU
bash
Tue Dec 16 21:42:54 2025
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.129.03 Driver Version: 535.129.03 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 Tesla PG503-216 On | 00000000:04:00.0 Off | 0 |
| N/A 21C P0 36W / 250W | 7184MiB / 32768MiB | 0% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
总结
1.GPU 占用7-8G
2.GPU 100%
3.7 秒左右一张1024*1024
4.还是挺好用的,GPU内存占用只有7G多,比fp16少很多
bash