Streamlit + LangChain 1.0 简单实现智能问答前后端

Streamlit + LangChain 1.0 简单实现智能问答前后端

概述

Streamlit 是一款专为数据科学家和机器学习工程师设计的 Python 库,可快速将数据脚本转换为交互式 Web 应用,无需前端开发经验,所以最近研究了一下,结合LangChain 1.0 实现了简单的智能问答前后端应用,大模型使用DeepSeek。

依赖库

  • streamlit:用于构建Web交互界面
  • langchain 及相关组件:处理LLM交互逻辑
  • python-dotenv:加载环境变量,比如加载存储在配置文件中的API KEY。

Highlight code

1. 初始化配置

python 复制代码
# 加载环境变量
load_dotenv()

# 配置页面
st.set_page_config(
    page_title="DeepSeek 问答应用",
    page_icon="🤖",
    layout="wide",
    initial_sidebar_state="expanded"
)
  • 使用 load_dotenv() 加载 .env 文件中的环境变量
  • st.set_page_config() 配置页面基本属性,包括标题、图标和布局

2. 页面UI构建

python 复制代码
# 设置页面标题和说明
st.title("🤖 DeepSeek 智能问答应用")
st.markdown("使用 LangChain 1.0 和 Streamlit 构建的对话系统")
  • 通过 st.title()st.markdown() 设置页面标题和说明文字

3. 侧边栏配置

python 复制代码
with st.sidebar:
    st.header("配置选项")
    # API 密钥配置
    deepseek_api_key = st.text_input(
        "DeepSeek API Key",
        value=os.getenv("DEEPSEEK_API_KEY", ""),
        type="password",
        help="请输入您的 DeepSeek API Key"
    )
    # 清除对话历史按钮
    if st.button("清除对话历史", type="secondary"):
        st.session_state["messages"] = []
        st.rerun()
  • 使用 st.sidebar 创建侧边栏配置区域
  • 提供API密钥输入框(密码类型),默认从环境变量获取
  • 实现清除对话历史功能,通过操作 st.session_state 实现

4. 对话历史管理

python 复制代码
# 初始化对话历史
if "messages" not in st.session_state:
    st.session_state["messages"] = []

# 显示对话历史
for message in st.session_state["messages"]:
    if isinstance(message, HumanMessage):
        with st.chat_message("user"):
            st.markdown(message.content)
    elif isinstance(message, AIMessage):
        with st.chat_message("assistant"):
            st.markdown(message.content)
  • 使用 st.session_state 存储对话历史,实现页面刷新后数据保留
  • 区分用户消息(HumanMessage)和助手消息(AIMessage)并分别显示

5. 用户输入处理

python 复制代码
user_input = st.chat_input("请输入您的问题...")

if user_input:
    # 验证API密钥
    if not deepseek_api_key:
        st.error("请在侧边栏配置您的 DeepSeek API Key")
        st.stop()
    
    # 添加用户消息到会话历史
    st.session_state["messages"].append(HumanMessage(content=user_input))
    
    # 显示用户消息
    with st.chat_message("user"):
        st.markdown(user_input)
  • 使用 st.chat_input() 获取用户输入
  • 进行API密钥验证,确保调用模型前密钥已配置
  • 将用户消息添加到历史记录并显示

6. AI响应生成

python 复制代码
# 显示助手思考中状态
with st.chat_message("assistant"):
    with st.spinner("正在思考..."):
        chat_model=init_chat_model(model="deepseek:deepseek-chat")
        
        # 创建提示模板
        prompt = ChatPromptTemplate.from_messages([
            ("system", "你是一个智能助手,使用中文回答用户问题,保持友好和专业。"),
            *st.session_state["messages"]
        ])
        
        # 创建链
        chain = prompt | chat_model | StrOutputParser()
        
        try:
            # 生成回答
            response = chain.invoke({})
            
            # 显示回答
            st.markdown(response)
            
            # 添加助手消息到会话历史
            st.session_state["messages"].append(AIMessage(content=response))
            
        except Exception as e:
            st.error(f"请求失败: {str(e)}")
            st.error("请检查您的API密钥或网络连接")
  • 使用 st.spinner() 显示加载状态,提升用户体验
  • 通过 init_chat_model() 初始化DeepSeek模型
  • 使用LangChain 1.0的链(Chain)语法:prompt | chat_model | StrOutputParser()
  • 异常处理确保错误时能友好提示用户

关键技术点

  1. Streamlit 会话状态 :利用 st.session_state 保存对话历史,实现状态管理
  2. LangChain 1.0 链语法 :采用新的管道运算符 | 构建处理流程
  3. 消息类型区分 :使用 HumanMessageAIMessage 区分不同角色的消息
  4. API 密钥管理:支持环境变量和手动输入两种方式配置API密钥
  5. 错误处理:完善的异常捕获和用户提示

运行

Terminal 复制代码
streamlit run LC_RAG_07a_Streamlit.py

run后面替换成自己的文件名就可以启动运行。

完整版本的代码可以在如下位置找到:
https://github.com/microsoftbi/Langchain_DEMO/blob/main/RAG/LC_RAG_07a_Streamlit.py

后记

相对Vue,steamlit的学习成本更低一些。适合独立的开发和学习。但是在生产中主流还是更推荐Vue等前端框架,尤其在细节的前端定制化开发中。

后续可以扩充下比如streamlit如何响应langchain的middleware等功能,比如HITL。

相关推荐
我一定会有钱2 小时前
斐波纳契数列、end关键字
python
小鸡吃米…3 小时前
Python 列表
开发语言·python
星依网络4 小时前
yolov5实现游戏图像识别与后续辅助功能
python·开源·游戏程序·骨骼绑定
大佐不会说日语~4 小时前
Spring AI Alibaba 的 ChatClient 工具注册与 Function Calling 实践
人工智能·spring boot·python·spring·封装·spring ai
2501_921649495 小时前
如何获取美股实时行情:Python 量化交易指南
开发语言·后端·python·websocket·金融
qq_448011165 小时前
python HTTP请求同时返回为JSON的异常处理
python·http·json
棒棒的皮皮5 小时前
【OpenCV】Python图像处理几何变换之翻转
图像处理·python·opencv·计算机视觉
CodeCraft Studio5 小时前
国产化PPT处理控件Spire.Presentation教程:使用Python将图片批量转换为PPT
python·opencv·powerpoint·ppt文档开发·ppt组件库·ppt api
五阿哥永琪6 小时前
Spring Boot 中自定义线程池的正确使用姿势:定义、注入与最佳实践
spring boot·后端·python