4.2.1 分类任务

4.2.1 分类任务

分类模型的核心结构包括:输入à特征提取(卷积层)à 分类决策(全连接层),代表模型如下。

* LeNet-5:卷积网络的基石,确定了CNN的架构范式,验证了CNN可行。

* AlexNet:承上启下的划时代模型,结构更深,引入ReLU和dropout。

* VGG:堆叠3×3小卷积核替代大卷积核,结构非常规整,探索增加网络深度。

* GoogLeNet:引入Inception模块在单一层内提取多个尺度特征,开创并行多分支网络结构,所用1×1卷积成为深度网络标准配置。

* ResNet:里程碑式的革命性模型,提出了残差学习范式,引入的快捷连接也成为现代深度网络的标配,使得网络可以达到上千层;ResNet及其变体至今仍是许多任务最常用的骨干网络。

1.结构特点

以上代表模型的核心结构特点是:(1)一系列的卷积层、池化层进行特征提取,(2)最后通过全局平均池化或者展平层连接全连接层,(3)输出层使用softmax函数输出每个类别的概率。

2.骨干网络

由于现代CNN模型结构已经基本形成"输入à 骨干网络à 分类器"这样一种范式,因此上述LeNet、AlexNet、VGG、GoogLeNet、ResNet都是骨干网络的杰出代表,它们的设计哲学例如堆叠小卷积核、残差连接、分组卷积等,影响了后续所有视觉任务模型。

相关推荐
AI_56782 小时前
Webpack5优化的“双引擎”
大数据·人工智能·性能优化
LZL_SQ2 小时前
昇腾NPU架构设计 从抽象硬件模型到物理实现
人工智能·昇腾·cann·ascend c
慎独4132 小时前
家家有平台:Web3.0绿色积分引领消费新纪元
大数据·人工智能·物联网
火云牌神2 小时前
如何选择FAISS的索引类型
人工智能·faiss
Gavin在路上3 小时前
SpringAIAlibaba之高级特性与实战场景全解析(5)
人工智能
会挠头但不秃3 小时前
深度学习(4)卷积神经网络
人工智能·神经网络·cnn
百***24373 小时前
GPT-5.2 技术升级与极速接入指南:从版本迭代到落地实践
大数据·人工智能·gpt
L.fountain3 小时前
图像自回归生成(Auto-regressive image generation)实战学习(一)
人工智能·深度学习·学习·计算机视觉·图像自回归