4.2.1 分类任务

4.2.1 分类任务

分类模型的核心结构包括:输入à特征提取(卷积层)à 分类决策(全连接层),代表模型如下。

* LeNet-5:卷积网络的基石,确定了CNN的架构范式,验证了CNN可行。

* AlexNet:承上启下的划时代模型,结构更深,引入ReLU和dropout。

* VGG:堆叠3×3小卷积核替代大卷积核,结构非常规整,探索增加网络深度。

* GoogLeNet:引入Inception模块在单一层内提取多个尺度特征,开创并行多分支网络结构,所用1×1卷积成为深度网络标准配置。

* ResNet:里程碑式的革命性模型,提出了残差学习范式,引入的快捷连接也成为现代深度网络的标配,使得网络可以达到上千层;ResNet及其变体至今仍是许多任务最常用的骨干网络。

1.结构特点

以上代表模型的核心结构特点是:(1)一系列的卷积层、池化层进行特征提取,(2)最后通过全局平均池化或者展平层连接全连接层,(3)输出层使用softmax函数输出每个类别的概率。

2.骨干网络

由于现代CNN模型结构已经基本形成"输入à 骨干网络à 分类器"这样一种范式,因此上述LeNet、AlexNet、VGG、GoogLeNet、ResNet都是骨干网络的杰出代表,它们的设计哲学例如堆叠小卷积核、残差连接、分组卷积等,影响了后续所有视觉任务模型。

相关推荐
工藤学编程3 小时前
零基础学AI大模型之LangChain智能体之initialize_agent开发实战
人工智能·langchain
king王一帅4 小时前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技6 小时前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
Dxy12393102168 小时前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧8 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)8 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
没学上了9 小时前
CNNMNIST
人工智能·深度学习
宝贝儿好9 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
智驱力人工智能9 小时前
守护流动的规则 基于视觉分析的穿越导流线区检测技术工程实践 交通路口导流区穿越实时预警技术 智慧交通部署指南
人工智能·opencv·安全·目标检测·计算机视觉·cnn·边缘计算
AI产品备案9 小时前
生成式人工智能大模型备案制度与发展要求
人工智能·深度学习·大模型备案·算法备案·大模型登记