Pref-GRPO:通过成对比较实现稳定文本图像生成强化学习的新方法

概述

本文为文本到图像(T2I)模型提出了一种新的强化学习方法。

传统的 GRPO(组相对策略优化)方法使用基于分数的奖励模型来评估生成图像的质量,并通过对组内分数进行归一化来更新衡量标准。

然而,这种方法容易出现一个被称为 "奖励黑客 "的问题,即分数增加,图像质量却下降。

作者指出,这是 "虚幻优势 "造成的。

当生成图像之间的分数差异非常小,而归一化会过度强调差异时,就会出现这种情况。

为了解决这个问题,研究提出了一种名为 Pref-GRPO 的新方法。

这是一种基于图像对之间的相对偏好(成对偏好)而不是绝对分数来更新测量结果的机制。

此外,作者还为模型评估设计了一种名为 "UniGenBench "的新基准,可从细粒度维度评估 T2I 模型的性能。

这项工作的意义在于,它克服了传统方法的局限性,能够以更稳定的方式学习图像生成,并符合人类的偏好。

建议的方法

Pref-GRPO 的核心思想是将学习目标从传统的奖励分数最大化转移到 "相对偏好匹配"。

具体来说,针对给定的提示生成多张图像,并进行配对比较。

使用成对奖励模型(PPRM)来确定哪张图片更受欢迎,并将胜率作为奖励信号。

每张图片的胜率在组内进行归一化处理,并用于更新衡量标准。

这种设计有三个优点。

首先,胜出率的使用增加了奖励的方差,可以更清楚地区分质量好和质量差的图像。

其次,由于它是基于相对排名而不是绝对分数差异,因此对奖励噪音具有很强的抗干扰能力,并减少了奖励黑客的出现。

第三,它能提供更自然、更忠实的奖励信号,因为它反映了人类的判断本质上是基于相对比较这一事实。

此外,在评估方面,作者提出的 UniGenBench 甚至可以对文本理解和逻辑推理等细节维度进行评估,从而可以对模型的优缺点进行详细分析。

实验

在实验中,Pref-GRPO 首先与现有的奖励最大化方法(HPS、CLIP、UnifiedReward 等)进行了比较。

实验使用 Flux.1-dev 作为基础模型,并使用 UniGenBench 进行评估。

结果显示,Pref-GRPO 的总分提高了约 6 分,尤其是在逻辑推理和文本绘制方面。

此外,传统方法会出现 "奖励黑客 "现象,即在训练过程中奖励分数增加,图像质量却下降,而 Pref-GRPO 则有效地抑制了这一现象。

此外,对生成的图像进行定性比较后发现,现有方法会出现过度饱和等不自然的倾向,而 Pref-GRPO 则能生成更自然、更稳定的表达。

此外,在外部基准(GenEval 和 T2I-CompBench)中也观察到了稳定的性能改进。

使用 UniGenBench 进行的广泛模型比较显示,GPT-4o 和 Imagen-4.0-Ultra 等封闭源模型表现良好,而 Qwen-Image 和 HiDream 等开放源模型也取得了快速进步。

总之,可以得出结论,这种方法是显著提高 T2I 强化学习稳定性和实用性的有效方法。

相关推荐
之歆31 分钟前
Spring AI入门到实战到原理源码-MCP
java·人工智能·spring
知乎的哥廷根数学学派42 分钟前
面向可信机械故障诊断的自适应置信度惩罚深度校准算法(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习·矩阵
且去填词1 小时前
DeepSeek :基于 Schema 推理与自愈机制的智能 ETL
数据仓库·人工智能·python·语言模型·etl·schema·deepseek
待续3011 小时前
订阅了 Qoder 之后,我想通过这篇文章分享一些个人使用心得和感受。
人工智能
weixin_397578021 小时前
人工智能发展历史
人工智能
强盛小灵通专卖员1 小时前
基于深度学习的山体滑坡检测科研辅导:从论文实验到系统落地的完整思路
人工智能·深度学习·sci·小论文·山体滑坡
OidEncoder1 小时前
从 “粗放清扫” 到 “毫米级作业”,编码器重塑环卫机器人新能力
人工智能·自动化·智慧城市
Hcoco_me2 小时前
大模型面试题61:Flash Attention中online softmax(在线softmax)的实现方式
人工智能·深度学习·自然语言处理·transformer·vllm
阿部多瑞 ABU2 小时前
`chenmo` —— 可编程元叙事引擎 V2.3+
linux·人工智能·python·ai写作
极海拾贝2 小时前
GeoScene解决方案中心正式上线!
大数据·人工智能·深度学习·arcgis·信息可视化·语言模型·解决方案