上下文工程是什么,和Prompt、普通上下文区别

上下文工程是一个比Prompt工程更广泛的概念,它涵盖了多轮对话中所有信息的组织和管理,而不仅仅是单次请求的提示词设计。

三者的核心区别

维度 Prompt工程 普通上下文 上下文工程
范围 单次请求的输入设计 多轮对话的原始历史记录 整个对话生命周期
核心任务 设计System Prompt和User Message 自动记录所有对话内容 主动管理、筛选、压缩、组织上下文
技术手段 提示词编写技巧 简单的历史记录拼接 记忆系统、向量检索、摘要压缩、优先级排序
目标 让模型理解单次任务 保持对话连贯性 优化长期记忆和推理能力
复杂度 相对简单 被动记录 复杂系统设计

具体解释

1. Prompt工程(单次优化)

本质:设计单次请求的输入格式,让模型更好地理解当前任务。

示例

  • System Prompt:"你是一个专业的翻译助手,将中文翻译成英文"
  • User Message:"请翻译:今天天气真好"

特点:只关注当前这一轮对话的输入设计。

2. 普通上下文(被动记录)

本质:简单地将所有历史对话拼接起来,作为下一轮请求的输入。

示例

复制代码
用户:你好
AI:你好,有什么可以帮您?
用户:我想了解北京的天气
AI:北京今天晴,25°C
用户:那上海呢?

问题:随着对话轮次增加,上下文会越来越长,导致:

  • 计算成本增加
  • 模型可能遗忘早期重要信息
  • 无关信息干扰模型判断

3. 上下文工程(主动管理)

本质:对多轮对话进行智能管理,包括:

核心技术

  • 记忆系统:将重要信息存入长期记忆,需要时提取
  • 摘要压缩:将多轮对话压缩成关键要点
  • 向量检索:根据当前问题检索相关历史信息
  • 优先级排序:决定哪些信息应该保留在上下文窗口

示例场景

复制代码
用户:我想去北京旅游,有什么推荐?
AI:推荐故宫、长城、颐和园
用户:故宫门票多少钱?
AI:60元
用户:那长城呢?
AI:八达岭长城门票40元
用户:好的,我打算去故宫和长城,帮我规划一下路线

上下文工程处理

  • 提取关键信息:"用户想去北京旅游"、"推荐故宫和长城"、"故宫60元"、"长城40元"
  • 压缩成摘要:"用户计划去北京旅游,选择故宫和长城,已了解门票价格"
  • 当前请求时,将摘要+当前问题一起发送给模型

总结

Prompt工程 是"怎么写好当前这一句话",普通上下文 是"把所有历史对话都记下来",而上下文工程是"如何智能地记住、忘记、提取和利用历史信息"。

在实际应用中,上下文工程是构建长期对话AI助手的关键技术,它让AI能够:

  • 记住用户偏好
  • 保持对话一致性
  • 避免上下文窗口爆炸
  • 在长对话中保持良好表现
相关推荐
慢半拍iii4 小时前
CANN算子开发实战:手把手教你基于ops-nn仓库编写Broadcast广播算子
人工智能·计算机网络·ai
User_芊芊君子4 小时前
CANN数学计算基石ops-math深度解析:高性能科学计算与AI模型加速的核心引擎
人工智能·深度学习·神经网络·ai
小白|5 小时前
CANN与联邦学习融合:构建隐私安全的分布式AI推理与训练系统
人工智能·机器学习·自动驾驶
艾莉丝努力练剑5 小时前
hixl vs NCCL:昇腾生态通信库的独特优势分析
运维·c++·人工智能·cann
梦帮科技5 小时前
Node.js配置生成器CLI工具开发实战
前端·人工智能·windows·前端框架·node.js·json
程序员泠零澪回家种桔子5 小时前
Spring AI框架全方位详解
java·人工智能·后端·spring·ai·架构
Echo_NGC22375 小时前
【FFmpeg 使用指南】Part 3:码率控制策略与质量评估体系
人工智能·ffmpeg·视频·码率
纤纡.5 小时前
PyTorch 入门精讲:从框架选择到 MNIST 手写数字识别实战
人工智能·pytorch·python
大大大反派5 小时前
CANN 生态中的自动化部署引擎:深入 `mindx-sdk` 项目构建端到端 AI 应用
运维·人工智能·自动化
程序猿追5 小时前
深度解读 AIR (AI Runtime):揭秘 CANN 极致算力编排与调度的核心引擎
人工智能