向量数据库检索

if not self.collection:

raise RuntimeError("请先创建集合")

生成查询向量

query_embedding = self.generate_embedding(query_text)

搜索参数

search_params = {

"metric_type": "L2",

"params": {"nprobe": 16}

}

执行搜索

print(f"正在搜索相似文本: '{query_text}'")

print('--------query_embedding----------------')

print(query_text)

print(query_embedding)

print('--------query_embedding----------------')

results = self.collection.search(

data=[query_embedding],

anns_field="embedding",

param=search_params,

limit=top_k,

output_fields=["text", "metadata"]

)

print('-----------------------results--------------------')

print(results)

print('-----------------------results--------------------')

正在搜索相似文本: '人工智能是计算机科学的一个分支'

--------query_embedding----------------

人工智能是计算机科学的一个分支

0.0868442 0.03383261 0.8867534 0.40404728 0.25568193 0.8143026 0.9898358 0.13523214 0.7775536 0.1047672 0.97602385 0.24655622 0.26915395 0.24497598 0.3665343 0.46741247 0.68997544 0.2505883 0.06964615 0.03187205 0.52018636 0.62224406 0.69120926 0.9545073 0.08183594 0.01488718 0.15640016 0.5334772 0.21839626 0.68861496 0.1709311 0.20307513 0.6517363 0.6155564 0.7335377 0.94831115 0.8792044 0.95748454 0.6033911 0.2018383 0.930259 0.56085527 0.20518194 0.9262032 0.38187274 0.6069298 0.93542224 0.37852377 0.30073825 0.8376683 0.24371381 0.02810273 0.08106949 0.13087785 0.5004337 0.51431286 0.13320969 0.71445334 0.6194988 0.01581137 0.9501668 0.1934796 0.742703 0.70844597 0.1604538 0.6802646 0.34634224 0.5456539 0.46275988 0.16551328 0.83565605 0.6016001 0.61109984 0.30627385 0.97093976 0.99930257 0.29578993 0.5469492 0.28768337 0.31434414 0.5663442 0.45112413 0.2169044 0.6302972 0.9722437 0.02455941 0.8936516 0.8774959 0.57403 0.47009948 0.03824434 0.63443965 0.9589547 0.6899516 0.01201063 0.19486319 0.9027687 0.6574339 0.47412872 0.30099493 0.48049414 0.6311632 0.4573544 0.07649028 0.55467784 0.3708412 0.26274177 0.4506525 0.4223067 0.4124977 0.21018541 0.0047362 0.7705015 0.5451533 0.40615085 0.49359718 0.9902851 0.3093196 0.46972254 0.94213045 0.23006302 0.25168714 0.6346079 0.659631 0.18597034 0.1427686 0.00319374 0.07725212 0.248803 0.55326843 0.9220962 0.24718809 0.3429383 0.72895765 0.34254518 0.8834778 0.16492361 0.54141337 0.80008495 0.54066867 0.10767661 0.11337695 0.9722788 0.22725064 0.6083555 0.16575086 0.91433066 0.56114274 0.45415127 0.55633867 0.29271686 0.6290875 0.03038282 0.24328907 0.44549546 0.8016935 0.9557495 0.78130025 0.76477706 0.5649261 0.01037048 0.6484271 0.89897346 0.07986014 0.78563076 0.5275594 0.1287399 0.3641922 0.6627957 0.37034252 0.84199804 0.12278508 0.7041375 0.14166668 0.35956717 0.43021822 0.22173028 0.8375897 0.35586387 0.44742876 0.43792158 0.5106019 0.6179151 0.7982999 0.2936258 0.06909464 0.12378242 0.74651486 0.842421 0.35129678 0.2411833 0.10194065 0.05604327 0.47398013 0.03655601 0.18847401 0.66929865 0.5095275 0.64663976 0.80956185 0.13733079 0.04057472 0.34126204 0.83236104 0.33787668 0.7696634 0.50997025 0.02123572 0.9333264 0.22548226 0.20558542 0.16446085 0.05452509 0.74170697 0.9693923 0.35016173 0.27317715 0.22076762 0.13911383 0.3224318 0.62780064 0.01266924 0.60345036 0.77932215 0.20671229 0.09256509 0.6936266 0.9155535 0.43447575 0.8300272 0.13336998 0.7257102 0.5290116 0.6394721 0.46035555 0.28333265 0.7138636 0.09579473 0.03855465 0.08419628 0.28320348 0.25461447 0.36263362 0.10132778 0.6519665 0.13829006 0.12856436 0.02197313 0.95218045 0.53907984 0.8223095 0.8976899 0.68432736 0.323823 0.53508615 0.6927347 0.58701444 0.52786356 0.91721946 0.08061525 0.9977211 0.36784837 0.6412361 0.255943 0.42969427 0.16225992 0.00704757 0.31084278 0.5016951 0.93285614 0.35453308 0.12418976 0.88261133 0.08708221 0.57548743 0.84515256 0.971033 0.6419028 0.66201556 0.06947455 0.34324905 0.844067 0.8153894 0.8421173 0.9815654 0.25903043 0.46167833 0.45508775 0.5619033 0.47016808 0.8963042 0.95521957 0.11644958 0.32468733 0.99515224 0.8401741 0.01084056 0.67823964 0.5356839 0.26089817 0.72670436 0.2750553 0.49014148 0.40102965 0.8850007 0.91662025 0.22271399 0.38651085 0.34219617 0.04020097 0.4357878 0.43785694 0.5755065 0.24301112 0.91679806 0.35708296 0.10404775 0.40478405 0.11741883 0.21977386 0.0758483 0.75821483 0.2708614 0.22748029 0.66955537 0.5346489 0.67480105 0.09770001 0.99467295 0.9864922 0.3401579 0.66972685 0.01236195 0.33266217 0.13441859 0.19665805 0.29058382 0.98292196 0.71233046 0.28721112 0.08888026 0.690176 0.6657358 0.21345249 0.876079 0.7000211 0.6327144 0.43972552 0.09437454 0.29941922 0.4209495 0.7543784 0.32779083 0.11911198 0.6029227 0.8451076 0.28211638 0.4349335 0.7753495 0.51077855 0.06970291 0.46349403 0.96664506 0.25283307 0.85630757 0.6759779 0.8347701 0.24785449 0.93369955 0.6848017 0.01395762 0.9805456 0.9136605 0.85786355 0.3543869 0.5901738 0.52866274 0.553448 0.6957444 0.28894326 0.44469547 0.9105798 0.21184073 0.8289437

--------query_embedding----------------

-----------------------results--------------------

data: [[{'id': 462627561339618327, 'distance': 0.0, 'entity': {'text': '人工智能是计算机科学的一个分支', 'metadata': {'category': 'AI基础', 'priority': 1}}}, {'id': 462627561339618331, 'distance': 58.727821350097656, 'entity': {'text': '计算机视觉让机器能够理解图像', 'metadata': {'category': 'AI应用', 'priority': 3}}}, {'id': 462627561339618329, 'distance': 62.76405334472656, 'entity': {'text': '深度学习是机器学习的一个子集', 'metadata': {'category': '深度学习', 'priority': 2}}}]]

-----------------------results--------------------

相关推荐
摸鱼仙人~2 小时前
一文详解PyTorch DDP
人工智能·pytorch·python
超级种码2 小时前
Java:JavaAgent技术(java.instrument和java.attach)
java·开发语言·python
Salt_07283 小时前
DAY44 简单 CNN
python·深度学习·神经网络·算法·机器学习·计算机视觉·cnn
Iridescent11213 小时前
Iridescent:Day35
python
a程序小傲3 小时前
阿里Java面试被问:.Java 8中Stream API的常用操作和性能考量
开发语言·windows·python
智航GIS4 小时前
2.3 运算符详解
开发语言·python
屋顶那猫4 小时前
使用pyinstaller打包pytest项目
python·pytest
web3.08889994 小时前
接入API-自动化批量获取淘宝商品详情数据
开发语言·python
刹那间的回眸x.y4 小时前
UnitTestReport挺好用
python