图像处理逆问题(如去噪、超分辨率、修复等)旨在从退化观测中重建原始图像,传统方法常受限于不适定性和先验建模的复杂性。扩散模型作为一种新兴的深度生成范式,通过模拟数据在噪声与信号间的双向扩散过程,为逆问题提供了强大的概率重构框架。本综述系统梳理了扩散模型在图像逆问题求解中的研究进展:首先阐释其基于随机微分方程的理论基础;继而分类讨论基于条件生成、得分匹配等技术的重建方法;最后总结其在医学成像、遥感、计算摄影等领域的应用,并探讨当前面临的稳定性、效率等挑战与未来发展方向。


















图像处理逆问题(如去噪、超分辨率、修复等)旨在从退化观测中重建原始图像,传统方法常受限于不适定性和先验建模的复杂性。扩散模型作为一种新兴的深度生成范式,通过模拟数据在噪声与信号间的双向扩散过程,为逆问题提供了强大的概率重构框架。本综述系统梳理了扩散模型在图像逆问题求解中的研究进展:首先阐释其基于随机微分方程的理论基础;继而分类讨论基于条件生成、得分匹配等技术的重建方法;最后总结其在医学成像、遥感、计算摄影等领域的应用,并探讨当前面临的稳定性、效率等挑战与未来发展方向。

















