ReAct智能体实现示例

原文链接

python 复制代码
# This code is Apache 2 licensed:
# https://www.apache.org/licenses/LICENSE-2.0
import openai
import re
import httpx

openai.api_key = "sk-..."
 
class ChatBot:
    def __init__(self, system=""):
        self.system = system
        self.messages = []
        if self.system:
            self.messages.append({"role": "system", "content": system})
    
    def __call__(self, message):
        self.messages.append({"role": "user", "content": message})
        result = self.execute()
        self.messages.append({"role": "assistant", "content": result})
        return result
    
    def execute(self):
        completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=self.messages)
        # Uncomment this to print out token usage each time, e.g.
        # {"completion_tokens": 86, "prompt_tokens": 26, "total_tokens": 112}
        # print(completion.usage)
        return completion.choices[0].message.content

prompt = """
You run in a loop of Thought, Action, PAUSE, Observation.
At the end of the loop you output an Answer
Use Thought to describe your thoughts about the question you have been asked.
Use Action to run one of the actions available to you - then return PAUSE.
Observation will be the result of running those actions.

Your available actions are:

calculate:
e.g. calculate: 4 * 7 / 3
Runs a calculation and returns the number - uses Python so be sure to use floating point syntax if necessary

wikipedia:
e.g. wikipedia: Django
Returns a summary from searching Wikipedia

simon_blog_search:
e.g. simon_blog_search: Django
Search Simon's blog for that term

Always look things up on Wikipedia if you have the opportunity to do so.

Example session:

Question: What is the capital of France?
Thought: I should look up France on Wikipedia
Action: wikipedia: France
PAUSE

You will be called again with this:

Observation: France is a country. The capital is Paris.

You then output:

Answer: The capital of France is Paris
""".strip()


action_re = re.compile('^Action: (\w+): (.*)$')

def query(question, max_turns=5):
    i = 0
    bot = ChatBot(prompt)
    next_prompt = question
    while i < max_turns:
        i += 1
        result = bot(next_prompt)
        print(result)
        actions = [action_re.match(a) for a in result.split('\n') if action_re.match(a)]
        if actions:
            # There is an action to run
            action, action_input = actions[0].groups()
            if action not in known_actions:
                raise Exception("Unknown action: {}: {}".format(action, action_input))
            print(" -- running {} {}".format(action, action_input))
            observation = known_actions[action](action_input)
            print("Observation:", observation)
            next_prompt = "Observation: {}".format(observation)
        else:
            return


def wikipedia(q):
    return httpx.get("https://en.wikipedia.org/w/api.php", params={
        "action": "query",
        "list": "search",
        "srsearch": q,
        "format": "json"
    }).json()["query"]["search"][0]["snippet"]


def simon_blog_search(q):
    results = httpx.get("https://datasette.simonwillison.net/simonwillisonblog.json", params={
        "sql": """
        select
          blog_entry.title || ': ' || substr(html_strip_tags(blog_entry.body), 0, 1000) as text,
          blog_entry.created
        from
          blog_entry join blog_entry_fts on blog_entry.rowid = blog_entry_fts.rowid
        where
          blog_entry_fts match escape_fts(:q)
        order by
          blog_entry_fts.rank
        limit
          1""".strip(),
        "_shape": "array",
        "q": q,
    }).json()
    return results[0]["text"]

def calculate(what):
    return eval(what)

known_actions = {
    "wikipedia": wikipedia,
    "calculate": calculate,
    "simon_blog_search": simon_blog_search
}
相关推荐
wearegogog1231 天前
基于 MATLAB 的卡尔曼滤波器实现,用于消除噪声并估算信号
前端·算法·matlab
Drawing stars1 天前
JAVA后端 前端 大模型应用 学习路线
java·前端·学习
品克缤1 天前
Element UI MessageBox 增加第三个按钮(DOM Hack 方案)
前端·javascript·vue.js
小二·1 天前
Python Web 开发进阶实战:性能压测与调优 —— Locust + Prometheus + Grafana 构建高并发可观测系统
前端·python·prometheus
小沐°1 天前
vue-设置不同环境的打包和运行
前端·javascript·vue.js
qq_419854051 天前
CSS动效
前端·javascript·css
烛阴1 天前
3D字体TextGeometry
前端·webgl·three.js
acheding1 天前
Vue3 + AntV/X6 自定义节点实践:组件化节点与事件联动
前端框架·vue
桜吹雪1 天前
markstream-vue实战踩坑笔记
前端
C_心欲无痕1 天前
nginx - 实现域名跳转的几种方式
运维·前端·nginx