深度学习旅程之数学统计底座

核心知识框架

  1. 学习算法与线性回归示例
    • 理解"经验-任务-性能"三元组的 Mitchel 定义,它贯穿所有算法。
    • 线性回归是所有深度网络优化的起点:特征加权求和→损失→参数更新。
  2. 监督与无监督学习
    • 监督学习:标签可用,关注预测准确率;无监督学习:标签缺失,关注数据结构揭示。
    • 在深度学习中仍沿用此划分,但往往借助大量未标注数据做预训练。
  3. 泛化、正则化与容量
    • 模型容量 U 形曲线:低容量→欠拟合,适中→最佳,过高→过拟合。
    • 泛化误差 = 偏差 + 方差,正则化通过"增加偏差-减少方差"做贸易。
  4. 维数灾难与数据规模
    • 高维输入迫使模型更深或更宽,同时需要 L1/L2、Dropout、早停等技术遏制复杂度。
  5. 超参数与验证集
    • 学习率、正则化系数、批量大小皆属超参数;用验证集评估而非测试集,避免数据泄漏。
    • 手动调参先判断当前点在 U 形曲线的哪一侧,再决定扩大还是收缩模型容量。
  6. 深度学习优势
    • 语音、视觉等高维复杂任务得益于多层次特征提取,传统方法难以匹敌。
  7. 常见误区与调试技巧
    误区观测现象调试建议
    训练损失低但验证损失高过拟合增加正则化、数据增强、早停;或减少网络深度/宽度
    训练损失和验证损失都高欠拟合提升模型容量,减少正则化,检查特征工程是否合理
    训练损失下降慢学习率过小或存在局部停滞自动学习率调度,或改用动量、自适应优化器
  8. 实践流水线建议
  9. 数据:先做简单统计,确认分布与类别平衡。
  10. 模型:从小规模网络/浅决策树起步,快速跑通端到端流程。
  11. 评估:分三份---训练、验证、测试;绘制学习曲线,观察偏差-方差趋势。
  12. 正则化:L2 权重衰减 + Dropout 是深度网络标配;对小数据集可辅以数据增强。
  13. 超参数:网格搜索/随机搜索起步,后续可用贝叶斯优化或自动化 MLOps。
  14. 硬件:尽早引入 GPU/TPU,批量大小与学习率成正相关,可先固定批量再调整学习率。
相关推荐
Light6013 分钟前
智链未来:彭山物流园区从物理基建到数据智能体的全维度构建方案
人工智能·系统架构·数字孪生·智慧物流·实施路径·彭山项目
AI资源库16 分钟前
GLM-4.7-Flash模型深入解析
人工智能·语言模型
一切尽在,你来36 分钟前
1.2 LangChain 1.2.7 版本核心特性与升级点
人工智能·langchain
LYFlied38 分钟前
AI大时代下前端跨端解决方案的现状与演进路径
前端·人工智能
深蓝电商API41 分钟前
图片验证码识别:pytesseract+opencv入门
人工智能·opencv·计算机视觉·pytesseract
.Katherine௰41 分钟前
AI数字人模拟面试机器人
人工智能
光影少年42 分钟前
AI 前端 / 高级前端
前端·人工智能·状态模式
zhangshuang-peta1 小时前
OpenCode vs Claude Code vs OpenAI Codex:AI编程助手全面对比
人工智能·ai agent·mcp·peta
Bruk.Liu1 小时前
(LangChain 实战14):基于 ChatMessageHistory 自定义实现对话记忆功能
人工智能·python·langchain·agent
代码改善世界1 小时前
CANN中的AI算子开发:ops-nn仓库深度解读
人工智能