深度学习旅程之数学统计底座

核心知识框架

  1. 学习算法与线性回归示例
    • 理解"经验-任务-性能"三元组的 Mitchel 定义,它贯穿所有算法。
    • 线性回归是所有深度网络优化的起点:特征加权求和→损失→参数更新。
  2. 监督与无监督学习
    • 监督学习:标签可用,关注预测准确率;无监督学习:标签缺失,关注数据结构揭示。
    • 在深度学习中仍沿用此划分,但往往借助大量未标注数据做预训练。
  3. 泛化、正则化与容量
    • 模型容量 U 形曲线:低容量→欠拟合,适中→最佳,过高→过拟合。
    • 泛化误差 = 偏差 + 方差,正则化通过"增加偏差-减少方差"做贸易。
  4. 维数灾难与数据规模
    • 高维输入迫使模型更深或更宽,同时需要 L1/L2、Dropout、早停等技术遏制复杂度。
  5. 超参数与验证集
    • 学习率、正则化系数、批量大小皆属超参数;用验证集评估而非测试集,避免数据泄漏。
    • 手动调参先判断当前点在 U 形曲线的哪一侧,再决定扩大还是收缩模型容量。
  6. 深度学习优势
    • 语音、视觉等高维复杂任务得益于多层次特征提取,传统方法难以匹敌。
  7. 常见误区与调试技巧
    误区观测现象调试建议
    训练损失低但验证损失高过拟合增加正则化、数据增强、早停;或减少网络深度/宽度
    训练损失和验证损失都高欠拟合提升模型容量,减少正则化,检查特征工程是否合理
    训练损失下降慢学习率过小或存在局部停滞自动学习率调度,或改用动量、自适应优化器
  8. 实践流水线建议
  9. 数据:先做简单统计,确认分布与类别平衡。
  10. 模型:从小规模网络/浅决策树起步,快速跑通端到端流程。
  11. 评估:分三份---训练、验证、测试;绘制学习曲线,观察偏差-方差趋势。
  12. 正则化:L2 权重衰减 + Dropout 是深度网络标配;对小数据集可辅以数据增强。
  13. 超参数:网格搜索/随机搜索起步,后续可用贝叶斯优化或自动化 MLOps。
  14. 硬件:尽早引入 GPU/TPU,批量大小与学习率成正相关,可先固定批量再调整学习率。
相关推荐
退休钓鱼选手1 天前
[ Pytorch教程 ] 神经网络的基本骨架 torch.nn -Neural Network
pytorch·深度学习·神经网络
冰糖猕猴桃1 天前
【AI】把“大杂烩抽取”拆成多步推理:一个从单提示到多阶段管线的实践案例
大数据·人工智能·ai·提示词·多步推理
PPIO派欧云1 天前
PPIO上线GLM-OCR:0.9B参数SOTA性能,支持一键部署
人工智能·ai·大模型·ocr·智谱
雨大王5121 天前
怎么打造一个能自我进化的制造数字基座?
人工智能·汽车·制造
fengfuyao9851 天前
基于MATLAB的表面织构油润滑轴承故障频率提取(改进VMD算法)
人工智能·算法·matlab
爱吃泡芙的小白白1 天前
深入解析CNN中的Dropout层:从基础原理到最新变体实战
人工智能·神经网络·cnn·dropout·防止过拟合
Eloudy1 天前
全文 -- TileLang: A Composable Tiled Programming Model for AISystems
人工智能·量子计算·arch
才盛智能科技1 天前
K链通×才盛云:自助KTV品牌从0到1孵化超简单
大数据·人工智能·物联网·自助ktv系统·才盛云
哥布林学者1 天前
吴恩达深度学习课程:深度学习入门笔记全集目录
深度学习·ai
广州赛远1 天前
IRB2600-201.65特殊机器人防护服清洗工具详解与避坑指南
大数据·人工智能