围棋对弈Python程序开发完整指南:步骤3 - 气(Liberties)的计算算法设计

目录

步骤3:设计气(Liberties)的计算算法

[3.1 基础深度优先搜索(DFS)算法](#3.1 基础深度优先搜索(DFS)算法)

[3.2 并查集(Union-Find)算法](#3.2 并查集(Union-Find)算法)

[3.3 增量更新算法](#3.3 增量更新算法)

[3.4 位运算优化算法](#3.4 位运算优化算法)

[3.5 性能测试与比较](#3.5 性能测试与比较)

[3.6 算法选择建议](#3.6 算法选择建议)

技术要点总结

常见优化技巧

下一步计划

结语

参考文献


在围棋程序开发中,气(liberties)的计算是最核心、最基础的算法。准确高效地计算气不仅关系到提子、自杀等基本规则的实现,更是后续AI算法和胜负判定的基础。本文将深入探讨围棋气计算的各种算法设计,从基础DFS到高级优化技术,帮助您构建高性能的围棋引擎。

步骤3:设计气(Liberties)的计算算法

3.1 基础深度优先搜索(DFS)算法

在步骤2中我们已经介绍了基础的DFS算法,现在让我们深入优化这个算法:

复制代码
class GoBoard:
    def __init__(self, size=19):
        self.size = size
        self.board = [[None for _ in range(size)] for _ in range(size)]
        self.union_find = None  # 并查集数据结构
        self.liberty_cache = {}  # 气数缓存
        self.group_cache = {}    # 连通块缓存
        self._init_advanced_structures()
    
    def _init_advanced_structures(self):
        """初始化高级数据结构"""
        # 并查集初始化
        self.union_find = UnionFind(self.size * self.size)
        
        # 清空缓存
        self.liberty_cache.clear()
        self.group_cache.clear()
    
    def get_liberties_dfs(self, row, col, visited=None):
        """优化的DFS气计算算法"""
        if self.board[row][col] is None:
            return set()
        
        # 检查缓存
        cache_key = (row, col)
        if cache_key in self.liberty_cache:
            return self.liberty_cache[cache_key].copy()
        
        if visited is None:
            visited = set()
        
        stone_color = self.board[row][col]
        point = (row, col)
        
        if point in visited:
            return set()
        
        visited.add(point)
        liberties = set()
        
        # 使用迭代DFS避免递归深度限制
        stack = [point]
        visited_stack = set([point])
        
        while stack:
            current_row, current_col = stack.pop()
            
            # 检查四个方向
            for dr, dc in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
                new_row, new_col = current_row + dr, current_col + dc
                
                if 0 <= new_row < self.size and 0 <= new_col < self.size:
                    new_point = (new_row, new_col)
                    
                    if new_point in visited_stack:
                        continue
                    
                    if self.board[new_row][new_col] is None:
                        # 空点,计入气
                        liberties.add(new_point)
                    elif self.board[new_row][new_col] == stone_color:
                        # 同色棋子,加入栈继续搜索
                        stack.append(new_point)
                        visited_stack.add(new_point)
        
        # 更新缓存
        for stone_point in visited_stack:
            self.liberty_cache[stone_point] = liberties.copy()
        
        return liberties

3.2 并查集(Union-Find)算法

并查集是解决连通性问题的高效数据结构,特别适合围棋的连通块计算:

复制代码
class UnionFind:
    """并查集数据结构实现"""
    def __init__(self, n):
        self.parent = list(range(n))
        self.rank = [0] * n
        self.liberty_count = [0] * n  # 每个连通块的气数
        self.stone_count = [1] * n    # 每个连通块的棋子数
    
    def find(self, x):
        """查找根节点,带路径压缩"""
        if self.parent[x] != x:
            self.parent[x] = self.find(self.parent[x])
        return self.parent[x]
    
    def union(self, x, y):
        """合并两个集合,按秩合并"""
        root_x = self.find(x)
        root_y = self.find(y)
        
        if root_x == root_y:
            return root_x
        
        if self.rank[root_x] < self.rank[root_y]:
            root_x, root_y = root_y, root_x
        
        self.parent[root_y] = root_x
        self.stone_count[root_x] += self.stone_count[root_y]
        self.liberty_count[root_x] += self.liberty_count[root_y]
        
        if self.rank[root_x] == self.rank[root_y]:
            self.rank[root_x] += 1
        
        return root_x

class GoBoardWithUnionFind:
    """使用并查集的气计算实现"""
    def __init__(self, size=19):
        self.size = size
        self.board = [[None for _ in range(size)] for _ in range(size)]
        self.uf = UnionFind(size * size)
        self._init_union_find_liberties()
    
    def _point_to_index(self, row, col):
        """将坐标转换为并查集索引"""
        return row * self.size + col
    
    def _index_to_point(self, index):
        """将并查集索引转换为坐标"""
        return index // self.size, index % self.size
    
    def _init_union_find_liberties(self):
        """初始化并查集的气数"""
        # 初始化所有点的气数为相邻空点数
        for i in range(self.size):
            for j in range(self.size):
                idx = self._point_to_index(i, j)
                self.uf.liberty_count[idx] = self._count_adjacent_empty(i, j)
    
    def _count_adjacent_empty(self, row, col):
        """计算相邻空点数"""
        count = 0
        for dr, dc in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
            new_row, new_col = row + dr, col + dc
            if 0 <= new_row < self.size and 0 <= new_col < self.size:
                if self.board[new_row][new_col] is None:
                    count += 1
        return count
    
    def get_liberties_union_find(self, row, col):
        """使用并查集获取气数"""
        if self.board[row][col] is None:
            return 0
        
        root = self.uf.find(self._point_to_index(row, col))
        return self.uf.liberty_count[root]
    
    def update_liberties_after_move(self, row, col, player):
        """落子后更新气数"""
        placed_index = self._point_to_index(row, col)
        
        # 减少相邻空点的气数
        for dr, dc in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
            new_row, new_col = row + dr, col + dc
            if 0 <= new_row < self.size and 0 <= new_col < self.size:
                adj_index = self._point_to_index(new_row, new_col)
                if self.board[new_row][new_col] is None:
                    # 空点气数减少
                    root = self.uf.find(adj_index)
                    self.uf.liberty_count[root] -= 1
                elif self.board[new_row][new_col] == player:
                    # 合并同色连通块
                    self.uf.union(placed_index, adj_index)

3.3 增量更新算法

为了优化性能,我们可以实现增量更新的气计算算法:

复制代码
class IncrementalLibertyCalculator:
    """增量气计算器"""
    def __init__(self, board_size):
        self.size = board_size
        self.liberty_map = [[set() for _ in range(board_size)] for _ in range(board_size)]
        self.group_map = {}  # 连通块映射: group_id -> set(points)
        self.next_group_id = 0
    
    def initialize_from_board(self, board):
        """从棋盘状态初始化气计算"""
        # 清空现有数据
        self.liberty_map = [[set() for _ in range(self.size)] for _ in range(self.size)]
        self.group_map.clear()
        self.next_group_id = 0
        
        # 遍历棋盘,建立连通块
        visited = set()
        for i in range(self.size):
            for j in range(self.size):
                if board[i][j] is not None and (i, j) not in visited:
                    self._flood_fill_group(i, j, board, visited)
        
        # 计算每个点的气
        self._calculate_all_liberties(board)
    
    def _flood_fill_group(self, start_row, start_col, board, visited):
        """洪水填充法建立连通块"""
        if (start_row, start_col) in visited:
            return
        
        color = board[start_row][start_col]
        if color is None:
            return
        
        group_id = self.next_group_id
        self.next_group_id += 1
        self.group_map[group_id] = set()
        
        stack = [(start_row, start_col)]
        visited.add((start_row, start_col))
        
        while stack:
            row, col = stack.pop()
            self.group_map[group_id].add((row, col))
            
            # 检查四个方向
            for dr, dc in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
                new_row, new_col = row + dr, col + dc
                if (0 <= new_row < self.size and 0 <= new_col < self.size and 
                    (new_row, new_col) not in visited and 
                    board[new_row][new_col] == color):
                    stack.append((new_row, new_col))
                    visited.add((new_row, new_col))
    
    def _calculate_all_liberties(self, board):
        """计算所有点的气"""
        for group_id, points in self.group_map.items():
            group_liberties = set()
            
            # 计算整个连通块的气
            for row, col in points:
                for dr, dc in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
                    new_row, new_col = row + dr, col + dc
                    if (0 <= new_row < self.size and 0 <= new_col < self.size and 
                        board[new_row][new_col] is None):
                        group_liberties.add((new_row, new_col))
            
            # 为连通块内每个点分配相同的气集合
            for point in points:
                row, col = point
                self.liberty_map[row][col] = group_liberties.copy()
    
    def update_after_move(self, move_row, move_col, player, board):
        """落子后增量更新气计算"""
        # 更新落子点的气
        self.liberty_map[move_row][move_col] = self._calculate_point_liberties(move_row, move_col, board)
        
        # 更新相邻点的气
        affected_points = set()
        for dr, dc in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
            new_row, new_col = move_row + dr, move_col + dc
            if 0 <= new_row < self.size and 0 <= new_col < self.size:
                affected_points.add((new_row, new_col))
        
        # 重新计算受影响点的气
        for row, col in affected_points:
            if board[row][col] is not None:
                self.liberty_map[row][col] = self._calculate_point_liberties(row, col, board)
    
    def _calculate_point_liberties(self, row, col, board):
        """计算单个点的气"""
        if board[row][col] is None:
            return set()
        
        liberties = set()
        color = board[row][col]
        visited = set()
        stack = [(row, col)]
        visited.add((row, col))
        
        while stack:
            current_row, current_col = stack.pop()
            
            for dr, dc in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
                new_row, new_col = current_row + dr, current_col + dc
                if (0 <= new_row < self.size and 0 <= new_col < self.size and 
                    (new_row, new_col) not in visited):
                    
                    if board[new_row][new_col] is None:
                        liberties.add((new_row, new_col))
                    elif board[new_row][new_col] == color:
                        stack.append((new_row, new_col))
                        visited.add((new_row, new_col))
        
        return liberties

3.4 位运算优化算法

对于性能要求极高的场景,可以使用位运算进行优化:

复制代码
class BitwiseLibertyCalculator:
    """位运算气计算器(适用于小棋盘)"""
    def __init__(self, board_size):
        if board_size > 32:
            raise ValueError("位运算优化只适用于32路以下棋盘")
        
        self.size = board_size
        self.black_mask = 0  # 黑棋位掩码
        self.white_mask = 0  # 白棋位掩码
        self.liberty_masks = [0] * (board_size * board_size)  # 每个点的气掩码
    
    def _point_to_bit(self, row, col):
        """坐标转位索引"""
        return row * self.size + col
    
    def _bit_to_point(self, bit):
        """位索引转坐标"""
        return bit // self.size, bit % self.size
    
    def _get_adjacent_bits(self, bit):
        """获取相邻点的位索引"""
        row, col = self._bit_to_point(bit)
        adjacent_bits = []
        
        for dr, dc in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
            new_row, new_col = row + dr, col + dc
            if 0 <= new_row < self.size and 0 <= new_col < self.size:
                adjacent_bits.append(self._point_to_bit(new_row, new_col))
        
        return adjacent_bits
    
    def initialize_liberty_masks(self):
        """初始化气掩码"""
        total_points = self.size * self.size
        full_mask = (1 << total_points) - 1
        
        for i in range(total_points):
            liberty_mask = 0
            for adj_bit in self._get_adjacent_bits(i):
                liberty_mask |= (1 << adj_bit)
            self.liberty_masks[i] = liberty_mask
    
    def get_liberties_bitwise(self, row, col):
        """使用位运算获取气数"""
        if self.size > 32:
            return self.get_liberties_dfs(row, col)  # 回退到DFS
        
        point_bit = self._point_to_bit(row, col)
        color_mask = self.black_mask if self.board[row][col] == 'black' else self.white_mask
        
        # 获取连通块
        group_mask = self._flood_fill_bitwise(point_bit, color_mask)
        
        # 计算气:相邻空点且不在对方棋子位置
        adjacent_mask = 0
        current_bit = group_mask
        while current_bit:
            bit_pos = current_bit & -current_bit  # 获取最低位1
            bit_index = (bit_pos - 1).bit_length() - 1
            adjacent_mask |= self.liberty_masks[bit_index]
            current_bit &= current_bit - 1  # 清除最低位1
        
        # 气 = 相邻点且为空点
        empty_mask = full_mask & ~(self.black_mask | self.white_mask)
        liberties_mask = adjacent_mask & empty_mask
        
        return bin(liberties_mask).count('1')  # 统计1的个数即为气数
    
    def _flood_fill_bitwise(self, start_bit, color_mask):
        """位运算洪水填充"""
        group_mask = 1 << start_bit
        frontier = group_mask
        
        while frontier:
            new_frontier = 0
            current_bit = frontier
            
            while current_bit:
                bit_pos = current_bit & -current_bit
                bit_index = (bit_pos - 1).bit_length() - 1
                
                # 获取相邻同色棋子
                adjacent_mask = self.liberty_masks[bit_index] & color_mask
                new_bits = adjacent_mask & ~group_mask
                
                new_frontier |= new_bits
                group_mask |= new_bits
                
                current_bit &= current_bit - 1
            
            frontier = new_frontier
        
        return group_mask

3.5 性能测试与比较

复制代码
import time
import random

def performance_test():
    """性能测试比较各种算法"""
    size = 9
    test_board = GoBoard(size)
    
    # 随机生成测试局面
    for _ in range(20):
        row = random.randint(0, size-1)
        col = random.randint(0, size-1)
        color = 'black' if random.random() > 0.5 else 'white'
        test_board.board[row][col] = color
    
    algorithms = [
        ("基础DFS", test_board.get_liberties_dfs),
        ("并查集", test_board.get_liberties_union_find),
    ]
    
    # 测试点
    test_points = [(4, 4), (2, 2), (6, 6), (0, 0), (8, 8)]
    
    print("气计算算法性能测试结果:")
    print("=" * 50)
    
    for algo_name, algo_func in algorithms:
        total_time = 0
        valid_tests = 0
        
        for row, col in test_points:
            if test_board.board[row][col] is not None:
                start_time = time.time()
                liberties = algo_func(row, col)
                end_time = time.time()
                
                execution_time = (end_time - start_time) * 1000  # 毫秒
                total_time += execution_time
                valid_tests += 1
                
                print(f"{algo_name}: ({row},{col}) -> {len(liberties)}气, 耗时: {execution_time:.3f}ms")
        
        if valid_tests > 0:
            avg_time = total_time / valid_tests
            print(f"{algo_name}平均耗时: {avg_time:.3f}ms")
        print("-" * 30)

def accuracy_test():
    """准确性测试"""
    size = 5
    test_board = GoBoard(size)
    
    # 创建测试局面
    # 黑棋: (0,0), (0,1), (1,0)
    # 白棋: (1,1)
    test_board.board[0][0] = 'black'
    test_board.board[0][1] = 'black'
    test_board.board[1][0] = 'black'
    test_board.board[1][1] = 'white'
    
    print("准确性测试:")
    print("黑棋(0,0)的气:", len(test_board.get_liberties_dfs(0, 0)))
    print("白棋(1,1)的气:", len(test_board.get_liberties_dfs(1, 1)))
    
    # 预期结果:黑棋连通块有3气,白棋有1气

if __name__ == "__main__":
    performance_test()
    accuracy_test()

3.6 算法选择建议

根据不同的应用场景,推荐使用不同的气计算算法:

  1. 教学/演示用途:基础DFS算法,代码简单易懂
  2. 中等规模棋盘(9-19路):增量更新算法,平衡性能与复杂度
  3. 高性能需求:并查集算法,适合AI搜索
  4. 极小棋盘(9路以下):位运算算法,极致性能

技术要点总结

  1. 算法复杂度:DFS为O(n),并查集接近O(1),位运算为O(1)但内存消耗大

  2. 缓存策略:合理使用缓存可以大幅提升性能

  3. 增量更新:只更新受影响的部分,避免全盘重新计算

  4. 数据结构选择:根据棋盘大小和性能要求选择合适的数据结构

常见优化技巧

  1. 懒更新:只在需要时计算气数,避免不必要的计算

  2. 分组计算:按连通块分组,减少重复计算

  3. 边界处理:优化棋盘边角的特殊处理

  4. 内存优化:使用更紧凑的数据表示方法

下一步计划

完成气计算算法的优化后,下一步将实现:

  • 步骤4:完善提子逻辑和劫争规则
  • 步骤5:开发胜负判定和计分系统
  • 步骤6:实现基础AI算法

结语

气计算是围棋程序的核心算法,其性能直接影响整个程序的效率。本文详细介绍了从基础DFS到高级位运算的各种气计算算法,并提供了性能测试和选择建议。通过合理选择算法和优化策略,可以构建出高性能的围棋引擎。

参考文献

  1. 《算法导论》- Thomas H. Cormen
  2. 并查集在围棋中的应用研究
  3. 位运算优化技巧
  4. 增量计算算法设计模式

通过本指南,您已经掌握了围棋气计算的各种高级算法技术。在接下来的文章中,我们将继续探讨更复杂的围棋规则和AI算法实现。

相关推荐
AndrewHZ2 小时前
【图像处理基石】什么是光栅化?
图像处理·人工智能·算法·计算机视觉·3d·图形渲染·光栅化
叶子2024222 小时前
骨架点排序计算
python
小白菜又菜2 小时前
Leetcode 944. Delete Columns to Make Sorted
算法·leetcode
AC赳赳老秦2 小时前
行业数据 benchmark 对比:DeepSeek上传数据生成竞品差距分析报告
开发语言·网络·人工智能·python·matplotlib·涛思数据·deepseek
小鸡吃米…2 小时前
带Python的人工智能——深度学习
人工智能·python·深度学习
胡伯来了2 小时前
07 - 数据收集 - 网页采集工具Scrapy
python·scrapy·数据采集
御水流红叶2 小时前
第七届金盾杯(第一次比赛)wp
开发语言·python
小徐Chao努力2 小时前
【Langchain4j-Java AI开发】04-AI 服务核心模式
java·人工智能·python
我找到地球的支点啦2 小时前
Matlab系列(006) 一利用matlab保存txt文件和读取txt文件
开发语言·算法·matlab