根据txt标签文件在图像上生成真实标签框

一个代码示例

运行下面代码会在图像上标注出真实标签框。

python 复制代码
import numpy as np
import cv2

images_dir = r'D:/Demo/images2'  # 图像文件夹位置
labels_dir = r'D:/Demo/labels2'  # 标签文件夹位置
output_dir = r'D:/Demo/output'   # 输出文件夹位置

os.makedirs(output_dir, exist_ok=True)

for img_name in os.listdir(images_dir):
    if not img_name.lower().endswith(('.jpg', '.jpeg', '.png')):
        continue

    img_path = os.path.join(images_dir, img_name)
    label_path = os.path.join(labels_dir, os.path.splitext(img_name)[0] + '.txt')

    # 使用 PIL 读取图像(支持中文路径)
    try:
        pil_img = Image.open(img_path).convert('RGB')
        image = np.array(pil_img)
        image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
    except Exception as e:
        print(f"无法读取图像: {img_path}, 错误: {e}")
        continue

    h, w = image.shape[:2]

    if not os.path.exists(label_path):
        print(f"未找到标签文件: {label_path}")
        continue

    with open(label_path, 'r', encoding='utf-8') as f:
        for line in f:
            parts = line.strip().split()
            if len(parts) != 5:
                continue
            # class_id = int(parts[0])  # 不需要类别名,可不使用
            x_center = float(parts[1]) * w
            y_center = float(parts[2]) * h
            box_w = float(parts[3]) * w
            box_h = float(parts[4]) * h

            x1 = int(x_center - box_w / 2)
            y1 = int(y_center - box_h / 2)
            x2 = int(x_center + box_w / 2)
            y2 = int(y_center + box_h / 2)

            color = (0, 255, 0)  # 绿色框
            # color = (0, 0, 255)  红色框  需要时把上面那行注释掉,用这行代码
            thickness = 2
            cv2.rectangle(image, (x1, y1), (x2, y2), color, thickness)
            # 注意:这里没有 cv2.putText,所以不会显示 "ship"

    output_path = os.path.join(output_dir, img_name)
    cv2.imwrite(output_path, image)
    print(f"已保存带框图像: {output_path}")
相关推荐
集芯微电科技有限公司2 小时前
PC1001超高频率(50HMZ)单通单低侧GaN FET驱动器支持正负相位配置
数据结构·人工智能·单片机·嵌入式硬件·神经网络·生成对抗网络·fpga开发
Love Song残响2 小时前
VSCode高效AI开发全攻略
ide·人工智能·vscode
zcg19422 小时前
不用干净数据也能学会降噪——N2N派
深度学习·计算机视觉
码农小白猿2 小时前
IACheck提升锅炉安装验收报告审核效率:智能化审核为安全合规保驾护航
运维·人工智能·ai·iacheck
hello我是小菜鸡2 小时前
马尔可夫跳变系统镇定
人工智能·机器学习
阿正的梦工坊2 小时前
Rubicon论文数据部分详解:从Rubric设计到RL Pipeline的全流程
人工智能·深度学习·机器学习·语言模型·自然语言处理
njsgcs2 小时前
cuas 电脑操作ai 相关
人工智能
独自归家的兔3 小时前
基于 cosyvoice-v3-plus 的 个人音色复刻 (华为OBS)
人工智能·华为·语音识别
fantasy_arch3 小时前
AV1视频编码位于图像边界的超级块划分
计算机视觉·音视频·av1