我写了一个OCR测试工具:DeepSeekOCR、PaddleOCR 和 混元OCR

大家好,我是 Ai 学习的老章

最近的 OCR 大模型我都做了本地部署和测试,还写了一个 API 统一对接这三个模型

腾讯混元 OCR 大模型,本地部署,实测

本地部署 PaddleOCR,消费级显卡轻松跑,支持本地图片和 PDF 文件

DeepSeek-OCR 本地部署(上):CUDA 升级 12.9,vLLM 升级至最新稳定版

DeepSeek-OCR 本地部署(下):vLLM 离线推理,API 重写,支持本地图片、PDF 解析

很多同学问选哪个?

成年人怎么还在做选择呢,必须全都要啊

我用 FastAPI 框架撸了一个简单的 OCR 模型对比工具 (OCR Comparison Tool),可以实现同样的提示词 + 图片/PDF,利用 Python 多线程并行调用 DeepSeek、Paddle 和 混元这三个模型的 API 进行解析,并将结果并排展示。

前端其实纯 HTML+CSS+js 实现,为了内网部署,不依赖任何 CND。

使用也很简单,图片/PDF 上传之后,输入提示词,没有特殊要求,使用默认就行。

点击 Run OCR Comparison 即可

三者都很快,内置了轻量级 Markdown 解析其,自动渲染结果。

也可以切换到识别后的原始 Markdown,支持一键 copy

核心代码如下(完整代码接近 600 行,大多是 HTML 相关):

感兴趣的同学可以试试,OCR 模型 API 部分替换成官方/第三方的 API

这段代码稍作修改就可以在线部署运行了

python 复制代码
#!/usr/bin/env python3
"""
OCR Comparison Web App - 美化版,不依赖外部 CDN
"""
import os
import re
import shutil
import tempfile
import requests
from concurrent.futures import ThreadPoolExecutor

import uvicorn
from fastapi import FastAPI, File, Form, UploadFile
from fastapi.responses import HTMLResponse

app = FastAPI(title="OCR Comparison")

# --- Configuration ---
MODELS = {
    "DeepSeek-OCR": "http://",
    "PaddleOCR": "http://",
    "HunyuanOCR": "http://",
}


def call_api(model_name, api_url, file_path, prompt):
    """调用单个 OCR API"""
    print(f"[INFO] Calling {model_name}: {api_url}")
    try:
        with open(file_path, 'rb') as f:
            resp = requests.post(
                api_url,
                files={'file': (os.path.basename(file_path), f)},
                data={'prompt': prompt},
                timeout=300
            )
        print(f"[INFO] {model_name} status: {resp.status_code}")
        if resp.status_code == 200:
            data = resp.json()
            result = data.get("result", str(data))
            print(f"[INFO] {model_name} result length: {len(result)}")
            return result
        return f"HTTP Error: {resp.status_code}"
    except Exception as e:
        print(f"[ERROR] {model_name}: {e}")
        return f"Error: {e}"


HTML_PAGE = """
<!DOCTYPE html>
省略
</html>
"""


@app.get("/", response_class=HTMLResponse)
async def index():
    return HTML_PAGE


@app.post("/api/compare")
async def compare(
    file: UploadFile = File(...),
    prompt: str = Form("Convert the document to markdown.")
):
    print(f"\n{'='*60}")
    print(f"[INFO] Received request: {file.filename}")
    print(f"[INFO] Prompt: {prompt[:50]}...")
    print(f"{'='*60}")
    
    temp_dir = tempfile.mkdtemp()
    temp_path = os.path.join(temp_dir, file.filename)
    
    try:
        with open(temp_path, "wb") as f:
            content = await file.read()
            f.write(content)
        
        print(f"[INFO] Saved to: {temp_path}, size: {len(content)} bytes")
        
        # 并行调用三个 API
        results = {}
        with ThreadPoolExecutor(max_workers=3) as executor:
            futures = {
                "deepseek": executor.submit(call_api, "DeepSeek-OCR", MODELS["DeepSeek-OCR"], temp_path, prompt),
                "paddle": executor.submit(call_api, "PaddleOCR", MODELS["PaddleOCR"], temp_path, prompt),
                "hunyuan": executor.submit(call_api, "HunyuanOCR", MODELS["HunyuanOCR"], temp_path, prompt),
            }
            
            for name, future in futures.items():
                try:
                    result = future.result(timeout=310)
                    results[name] = result
                    print(f"[INFO] {name} done, length: {len(result)}")
                except Exception as e:
                    results[name] = f"Error: {e}"
                    print(f"[ERROR] {name}: {e}")
        
        print(f"[INFO] All done. Returning results.")
        print(f"[DEBUG] Results keys: {list(results.keys())}")
        
        return results
        
    finally:
        shutil.rmtree(temp_dir, ignore_errors=True)


if __name__ == "__main__":
    print("\n" + "="*60)
    print("OCR Comparison Server")
    print("URL: http://0.0.0.0:8080")
    print("="*60 + "\n")
    
    uvicorn.run(app, host="0.0.0.0", port=8080)
相关推荐
A小码哥16 小时前
DeepSeek-OCR-2 开源 OCR 模型的技术
ocr
2401_836235861 天前
中安未来行驶证识别:以OCR智能力量,重构车辆证件数字化效率
人工智能·深度学习·ocr
HyperAI超神经2 天前
在线教程|DeepSeek-OCR 2公式/表格解析同步改善,以低视觉token成本实现近4%的性能跃迁
开发语言·人工智能·深度学习·神经网络·机器学习·ocr·创业创新
蛋王派2 天前
DeepSeek-OCR-v2 模型解析和部署应用
人工智能·ocr
小白狮ww2 天前
要给 OCR 装个脑子吗?DeepSeek-OCR 2 让文档不再只是扫描
人工智能·深度学习·机器学习·ocr·cpu·gpu·deepseek
智慧地球(AI·Earth)3 天前
DeepSeek架构新探索!开源OCR 2诞生!
架构·ocr
OpenBayes3 天前
教程上新|DeepSeek-OCR 2公式/表格解析同步改善,以低视觉token成本实现近4%的性能跃迁
人工智能·深度学习·目标检测·机器学习·大模型·ocr·gpu算力
PPIO派欧云3 天前
PPIO上线GLM-OCR:0.9B参数SOTA性能,支持一键部署
人工智能·ai·大模型·ocr·智谱
东华果汁哥3 天前
【大模型 OCR】GLM-OCR 使用教程:从入门到部署
ocr
h7ml3 天前
查券返利机器人的OCR识别集成:Java Tesseract+OpenCV优化图片验证码的自动解析方案
java·机器人·ocr