PyCharm中测试、训练YOLO方法

复制代码
先导工作:配置pytorch环境,最好针对一个模型,配置一个虚拟环境(env)。具体方法详见:配置pytorch环境,并调试YOLO-CSDN博客.

一、测试(以YOLOv5为例,调用其中的detect.py及某训练好的模型文件)

1. 直接在 PyCharm Terminal 终端中运行   python detect.py --weights yolov5s.pt --source 0 #对摄像头实时视频进行检测。  

2. 也可在Anaconda prompt 终端中输入 conda activate yolov5,激活之前配置的yolov5环境。
   通过 CD,切换到 YOLOv5 路径后,运行
   python detect.py --weights yolov5s.pt --source 0 #对摄像头实时视频进行检测。
 
  1. 语法备注:
复制代码
Usage - sources:
    $ python detect.py --weights yolov5s.pt --source 0                # webcam
                                                     img.jpg          # image
                                                     vid.mp4          # video
                                                     screen           # screenshot
                                                     path/            # directory
                                                     list.txt         # list of images
                                                     list.streams     # list of streams
                                                     'path/*.jpg'      # glob
                              'https://youtu.be/LNwODJXcvt4'  # YouTube
                              'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream

通过 ctrl + C,退出当前python执行的程序。通过conda deactivate 退出当前环境,返回base.

  1. 也可以通过新建或打开一个测试脚本如:Yolov5test.py, 直接运行进行测试。如脚本中的内容为:
复制代码
from ultralytics import YOLO
yolo = YOLO("./yolov5s.pt",task="detect")
result = yolo(source="E:/pro/yolov5-master/data/images/bus.jpg")  #也可以输入视频进行检测 或 摄像头(source = 0)检测
#  python 中文件路径,windows系统可用 \\ 两个反斜杠,或者/ 一个正斜杠(所有系统)。
#result = yolo(source=0)
result[0]

说明: 运行该脚本时,需要配置**解释器(run中的Edit Configuration里的Interpreter)为 当前虚拟环境内的解释器,即 本例为"**python3.10(yolov5)"

参见: yolov5的环境配置和基本使用_yolov5环境配置-CSDN博客

二、训练 (以YOLOv5为例,调用其中的train.py及某预训练好的模型文件

  1. 数据标注

  2. 数据集划分

  3. 模型设置

  4. 模型训练

参见: c使用yolov5训练模型_yolo5 模型如何训练-CSDN博客

https://blog.csdn.net/xuherui123456/article/details/152665702

https://blog.csdn.net/qq_45874142/article/details/124884219?ops_request_misc=&request_id=&biz_id=102&utm_term=Pytorch%E8%AE%AD%E7%BB%83YOLO&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-8-124884219.142^v102^pc_search_

相关推荐
chian-ocean3 分钟前
量化加速实战:基于 `ops-transformer` 的 INT8 Transformer 推理
人工智能·深度学习·transformer
那个村的李富贵4 分钟前
从CANN到Canvas:AI绘画加速实战与源码解析
人工智能·ai作画·cann
水月wwww13 分钟前
【深度学习】卷积神经网络
人工智能·深度学习·cnn·卷积神经网络
晚霞的不甘38 分钟前
CANN 在工业质检中的亚像素级视觉检测系统设计
人工智能·计算机视觉·架构·开源·视觉检测
island131440 分钟前
CANN HIXL 高性能单边通信库深度解析:PGAS 模型在异构显存上的地址映射与异步传输机制
人工智能·神经网络·架构
前端摸鱼匠1 小时前
YOLOv8 环境配置全攻略:Python、PyTorch 与 CUDA 的和谐共生
人工智能·pytorch·python·yolo·目标检测
结局无敌1 小时前
构建百年工程:cann/ops-nn 的可持续演进之道
人工智能·cann
MSTcheng.1 小时前
CANN算子开发新范式:基于ops-nn探索aclnn两阶段调用架构
人工智能·cann
renhongxia11 小时前
如何基于知识图谱进行故障原因、事故原因推理,需要用到哪些算法
人工智能·深度学习·算法·机器学习·自然语言处理·transformer·知识图谱
做人不要太理性1 小时前
CANN Runtime 运行时与维测组件:异构任务调度、显存池管理与全链路异常诊断机制解析
人工智能·自动化