PyCharm中测试、训练YOLO方法

复制代码
先导工作:配置pytorch环境,最好针对一个模型,配置一个虚拟环境(env)。具体方法详见:配置pytorch环境,并调试YOLO-CSDN博客.

一、测试(以YOLOv5为例,调用其中的detect.py及某训练好的模型文件)

1. 直接在 PyCharm Terminal 终端中运行   python detect.py --weights yolov5s.pt --source 0 #对摄像头实时视频进行检测。  

2. 也可在Anaconda prompt 终端中输入 conda activate yolov5,激活之前配置的yolov5环境。
   通过 CD,切换到 YOLOv5 路径后,运行
   python detect.py --weights yolov5s.pt --source 0 #对摄像头实时视频进行检测。
 
  1. 语法备注:
复制代码
Usage - sources:
    $ python detect.py --weights yolov5s.pt --source 0                # webcam
                                                     img.jpg          # image
                                                     vid.mp4          # video
                                                     screen           # screenshot
                                                     path/            # directory
                                                     list.txt         # list of images
                                                     list.streams     # list of streams
                                                     'path/*.jpg'      # glob
                              'https://youtu.be/LNwODJXcvt4'  # YouTube
                              'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream

通过 ctrl + C,退出当前python执行的程序。通过conda deactivate 退出当前环境,返回base.

  1. 也可以通过新建或打开一个测试脚本如:Yolov5test.py, 直接运行进行测试。如脚本中的内容为:
复制代码
from ultralytics import YOLO
yolo = YOLO("./yolov5s.pt",task="detect")
result = yolo(source="E:/pro/yolov5-master/data/images/bus.jpg")  #也可以输入视频进行检测 或 摄像头(source = 0)检测
#  python 中文件路径,windows系统可用 \\ 两个反斜杠,或者/ 一个正斜杠(所有系统)。
#result = yolo(source=0)
result[0]

说明: 运行该脚本时,需要配置**解释器(run中的Edit Configuration里的Interpreter)为 当前虚拟环境内的解释器,即 本例为"**python3.10(yolov5)"

参见: yolov5的环境配置和基本使用_yolov5环境配置-CSDN博客

二、训练 (以YOLOv5为例,调用其中的train.py及某预训练好的模型文件

  1. 数据标注

  2. 数据集划分

  3. 模型设置

  4. 模型训练

参见: c使用yolov5训练模型_yolo5 模型如何训练-CSDN博客

https://blog.csdn.net/xuherui123456/article/details/152665702

https://blog.csdn.net/qq_45874142/article/details/124884219?ops_request_misc=&request_id=&biz_id=102&utm_term=Pytorch%E8%AE%AD%E7%BB%83YOLO&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-8-124884219.142^v102^pc_search_

相关推荐
说私域7 小时前
开源活动报名AI智能客服AI智能名片预约服务小程序在精神服务中的应用场景研究
人工智能·小程序
2501_941507948 小时前
玻璃瓶检测与识别篇:YOLOv13-C3k2-MogaBlock模型改进详解
yolo
sandwu8 小时前
AI自动化测试(二)—— Playwright-MCP搭建自动化UI测试(browser-use&midscene对比)
人工智能·ui·自动化·playwright
DeepVis Research8 小时前
【Autonomous Driving/Sim】2026年度自动驾驶极端场景与车辆动力学仿真基准索引 (Benchmark Index)
人工智能·物联网·机器学习·自动驾驶·数据集
xixixi777778 小时前
SoC芯片本质——“系统级集成”
人工智能·机器学习·架构·pc·soc·集成·芯片
lisw058 小时前
工程软件化概述!
人工智能·科技·机器学习
咕咚-萌西8 小时前
Agent和workflow
人工智能
大模型RAG和Agent技术实践8 小时前
SQL Agent从“黑盒“到“全透明“:基于LangGraph+Phoenix的可观测性实战指南
数据库·人工智能·sql·agent·langgraph
GEO AI搜索优化助手9 小时前
边界、伦理与未来形态——GEO革命的深远影响与终极思考
人工智能·搜索引擎·生成式引擎优化·ai优化·geo搜索优化