python --yolo混合文件xml和img整理

python 复制代码
import os
import random
import time
from pathlib import Path
import shutil
import tkinter as tk
from tkinter import filedialog
from loguru import logger
import xml.etree.ElementTree as ET


class AnalysisXML(object):
    '''清洗xml'''

    def __init__(self):
        root = tk.Tk()
        root.withdraw()
        root.attributes('-topmost', 1)
        self.directory = filedialog.askdirectory()  # 打开目录选择器
        root.destroy()
        logger.warning(f'路径选择:【{self.directory}】')

    def xml_img_split(self):
        '''分割图片和xml'''
        logger.info(f'---------------------------分割图片和xml------------------------')
        self.images_path = Path(self.directory).parent.joinpath('images')
        self.xml_labels_path = Path(self.directory).parent.joinpath('xml_labels')

        self.images_path.mkdir(parents=True, exist_ok=True)
        self.xml_labels_path.mkdir(parents=True, exist_ok=True)

        for i in Path(self.directory).iterdir():
            if i.suffix == '.xml':
                new_path = self.xml_labels_path.joinpath(i.name)
                logger.debug(f'移动:【{i}】 -> 【{new_path}】')
                shutil.copy(str(i), str(new_path))

            if i.suffix in ('.jpg', '.png'):
                new_path = self.images_path.joinpath(i.name)
                logger.debug(f'移动:【{i}】 -> 【{new_path}】')
                shutil.copy(str(i), str(new_path))

    def xml_to_txt(self):
        '''xml转txt'''
        logger.info(f'----------------------------正在将xml转为txt-----------------------')
        self.txt_labels = self.xml_labels_path.joinpath('labels')  # 替换为实际的输出TXT文件夹路径
        os.makedirs(self.txt_labels, exist_ok=True)

        names_set = set()
        for filename in os.listdir(self.xml_labels_path):
            if filename.endswith('.xml'):
                tree = ET.parse(os.path.join(self.xml_labels_path, filename))
                root = tree.getroot()

                for obj in root.findall('object'):
                    name = obj.find('name').text
                    names_set.add(name)
        # 输出所有的name
        categories = []
        for name in names_set:
            categories.append(name)
        logger.success(f'标注的内容names:【{categories}】')

        category_to_index = {category: index for index, category in enumerate(categories)}

        # 遍历输入文件夹中的所有XML文件
        for filename in os.listdir(self.xml_labels_path):
            if filename.endswith('.xml'):
                xml_path = os.path.join(self.xml_labels_path, filename)
                logger.warning(f'正在处理:【{xml_path}】')
                # 解析XML文件
                tree = ET.parse(xml_path)
                root = tree.getroot()
                # 提取图像的尺寸
                size = root.find('size')
                width = int(size.find('width').text)
                height = int(size.find('height').text)
                # 存储name和对应的归一化坐标
                objects = []
                # 遍历XML中的object标签
                for obj in root.findall('object'):
                    name = obj.find('name').text
                    if name in category_to_index:
                        category_index = category_to_index[name]
                    else:
                        continue  # 如果name不在指定类别中,跳过该object
                    bndbox = obj.find('bndbox')
                    xmin = int(bndbox.find('xmin').text)
                    ymin = int(bndbox.find('ymin').text)
                    xmax = int(bndbox.find('xmax').text)
                    ymax = int(bndbox.find('ymax').text)
                    # 转换为中心点坐标和宽高
                    x_center = (xmin + xmax) / 2.0
                    y_center = (ymin + ymax) / 2.0
                    w = xmax - xmin
                    h = ymax - ymin
                    # 归一化
                    x = x_center / width
                    y = y_center / height
                    w = w / width
                    h = h / height
                    objects.append(f"{category_index} {x:.6f} {y:.6f} {w:.6f} {h:.6f}")
                # 输出结果到对应的TXT文件
                txt_filename = os.path.splitext(filename)[0] + '.txt'
                txt_path = os.path.join(self.txt_labels, txt_filename)
                with open(txt_path, 'w') as f:
                    for obj in objects:
                        f.write(obj + '\n')

    def to_dataset(self, test_ratio):
        '''整理为dataset'''
        output_folder = os.path.join(os.path.dirname(self.directory), 'datasets')

        input_image_folder = self.images_path
        input_label_folder = self.txt_labels

        train_images_folder = os.path.join(output_folder, 'train', 'images')
        train_labels_folder = os.path.join(output_folder, 'train', 'labels')
        val_images_folder = os.path.join(output_folder, 'val', 'images')
        val_labels_folder = os.path.join(output_folder, 'val', 'labels')

        os.makedirs(train_images_folder, exist_ok=True)
        os.makedirs(train_labels_folder, exist_ok=True)
        os.makedirs(val_images_folder, exist_ok=True)
        os.makedirs(val_labels_folder, exist_ok=True)

        # 获取所有图像文件列表
        images = [f for f in os.listdir(input_image_folder) if f.endswith('.jpg') or f.endswith('.png')]

        # 随机打乱图像文件列表
        random.shuffle(images)

        # 计算验证集的数量
        val_size = int(len(images) * test_ratio)

        # 划分验证集和训练集
        val_images = images[:val_size]
        train_images = images[val_size:]

        # 复制验证集图像和标签
        for image in val_images:
            label = os.path.splitext(image)[0] + '.txt'
            if os.path.exists(os.path.join(input_label_folder, label)):
                shutil.copy(os.path.join(input_image_folder, image), os.path.join(val_images_folder, image))
                shutil.copy(os.path.join(input_label_folder, label), os.path.join(val_labels_folder, label))
                logger.debug(
                    f'【{os.path.join(input_image_folder, image)}】 --> 【{os.path.join(val_images_folder, image)}】')
                logger.success(
                    f'【{os.path.join(input_label_folder, label)}】 --> 【{os.path.join(val_labels_folder, label)}】')
            else:
                logger.error(f"Warning: Label file {label} not found for image {image}")

        # 复制训练集图像和标签
        for image in train_images:
            label = os.path.splitext(image)[0] + '.txt'
            if os.path.exists(os.path.join(input_label_folder, label)):
                shutil.copy(os.path.join(input_image_folder, image), os.path.join(train_images_folder, image))
                shutil.copy(os.path.join(input_label_folder, label), os.path.join(train_labels_folder, label))
                logger.debug(
                    f'【{os.path.join(input_image_folder, image)}】 --> 【{os.path.join(train_images_folder, image)}】')
                logger.success(
                    f'【{os.path.join(input_label_folder, label)}】 --> 【{os.path.join(train_labels_folder, label)}】')
            else:
                logger.error(f"Warning: Label file {label} not found for image {image}")

    def start(self):
        '''启动'''
        time.sleep(1)
        self.xml_img_split()
        time.sleep(1)
        self.xml_to_txt()
        time.sleep(1)
        self.to_dataset(0.2)


if __name__ == '__main__':
    base_dir = os.path.dirname(__file__)
    log_path = os.path.join(base_dir, 'log.log')
    if os.path.exists(log_path):
        os.unlink(log_path)

    logger.add(log_path)
    print('...第一层文件夹')
    print('     -->第二层文件夹↓')
    print('       -->[xml和img混合文件夹]')
    print('\n')
    status = input('请确认xml和图片在同一个文件夹(99:确认)(任意值:取消):')
    if status in (99, '99'):
        a = AnalysisXML()
        a.start()
        logger.success('系统完成')
        for i in (3, 2, 1):
            time.sleep(1)
            logger.success(f'{i}/秒')
    else:
        logger.error('系统退出!')
        for i in (3, 2, 1):
            time.sleep(1)
            logger.error(f'{i}/秒')
相关推荐
极客小云13 小时前
【Python pip换源教程:国内镜像源配置方法(清华/阿里云/中科大源)】
开发语言·python·pip
阿凉070213 小时前
新版本JLink安装目录中缺失JLinkDevices.xml添加方法
xml·嵌入式硬件
shughui14 小时前
实现Python多版本共存
开发语言·python·pip
BoBoZz1914 小时前
TextureCutQuadric 利用3D隐式函数(Quadrics)来生成2D纹理坐标
python·vtk·图形渲染·图形处理
dhdjjsjs14 小时前
Day58 PythonStudy
开发语言·python·机器学习
AI Echoes14 小时前
LangChain 语义文档分割器与其他文档分割器的使用
大数据·人工智能·python·langchain·agent
lbb 小魔仙14 小时前
Linux 安全攻防 2025:从 SELinux 配置到漏洞应急响应全流程
linux·python·安全
郝学胜-神的一滴14 小时前
机器学习特征提取:TF-IDF模型详解与实践指南
开发语言·人工智能·python·程序人生·机器学习·tf-idf·sklearn
Kratzdisteln14 小时前
【MVCD 2】
python
vibag14 小时前
实现ReACT智能体
python·语言模型·langchain·大模型·langgraph