python --yolo混合文件xml和img整理

python 复制代码
import os
import random
import time
from pathlib import Path
import shutil
import tkinter as tk
from tkinter import filedialog
from loguru import logger
import xml.etree.ElementTree as ET


class AnalysisXML(object):
    '''清洗xml'''

    def __init__(self):
        root = tk.Tk()
        root.withdraw()
        root.attributes('-topmost', 1)
        self.directory = filedialog.askdirectory()  # 打开目录选择器
        root.destroy()
        logger.warning(f'路径选择:【{self.directory}】')

    def xml_img_split(self):
        '''分割图片和xml'''
        logger.info(f'---------------------------分割图片和xml------------------------')
        self.images_path = Path(self.directory).parent.joinpath('images')
        self.xml_labels_path = Path(self.directory).parent.joinpath('xml_labels')

        self.images_path.mkdir(parents=True, exist_ok=True)
        self.xml_labels_path.mkdir(parents=True, exist_ok=True)

        for i in Path(self.directory).iterdir():
            if i.suffix == '.xml':
                new_path = self.xml_labels_path.joinpath(i.name)
                logger.debug(f'移动:【{i}】 -> 【{new_path}】')
                shutil.copy(str(i), str(new_path))

            if i.suffix in ('.jpg', '.png'):
                new_path = self.images_path.joinpath(i.name)
                logger.debug(f'移动:【{i}】 -> 【{new_path}】')
                shutil.copy(str(i), str(new_path))

    def xml_to_txt(self):
        '''xml转txt'''
        logger.info(f'----------------------------正在将xml转为txt-----------------------')
        self.txt_labels = self.xml_labels_path.joinpath('labels')  # 替换为实际的输出TXT文件夹路径
        os.makedirs(self.txt_labels, exist_ok=True)

        names_set = set()
        for filename in os.listdir(self.xml_labels_path):
            if filename.endswith('.xml'):
                tree = ET.parse(os.path.join(self.xml_labels_path, filename))
                root = tree.getroot()

                for obj in root.findall('object'):
                    name = obj.find('name').text
                    names_set.add(name)
        # 输出所有的name
        categories = []
        for name in names_set:
            categories.append(name)
        logger.success(f'标注的内容names:【{categories}】')

        category_to_index = {category: index for index, category in enumerate(categories)}

        # 遍历输入文件夹中的所有XML文件
        for filename in os.listdir(self.xml_labels_path):
            if filename.endswith('.xml'):
                xml_path = os.path.join(self.xml_labels_path, filename)
                logger.warning(f'正在处理:【{xml_path}】')
                # 解析XML文件
                tree = ET.parse(xml_path)
                root = tree.getroot()
                # 提取图像的尺寸
                size = root.find('size')
                width = int(size.find('width').text)
                height = int(size.find('height').text)
                # 存储name和对应的归一化坐标
                objects = []
                # 遍历XML中的object标签
                for obj in root.findall('object'):
                    name = obj.find('name').text
                    if name in category_to_index:
                        category_index = category_to_index[name]
                    else:
                        continue  # 如果name不在指定类别中,跳过该object
                    bndbox = obj.find('bndbox')
                    xmin = int(bndbox.find('xmin').text)
                    ymin = int(bndbox.find('ymin').text)
                    xmax = int(bndbox.find('xmax').text)
                    ymax = int(bndbox.find('ymax').text)
                    # 转换为中心点坐标和宽高
                    x_center = (xmin + xmax) / 2.0
                    y_center = (ymin + ymax) / 2.0
                    w = xmax - xmin
                    h = ymax - ymin
                    # 归一化
                    x = x_center / width
                    y = y_center / height
                    w = w / width
                    h = h / height
                    objects.append(f"{category_index} {x:.6f} {y:.6f} {w:.6f} {h:.6f}")
                # 输出结果到对应的TXT文件
                txt_filename = os.path.splitext(filename)[0] + '.txt'
                txt_path = os.path.join(self.txt_labels, txt_filename)
                with open(txt_path, 'w') as f:
                    for obj in objects:
                        f.write(obj + '\n')

    def to_dataset(self, test_ratio):
        '''整理为dataset'''
        output_folder = os.path.join(os.path.dirname(self.directory), 'datasets')

        input_image_folder = self.images_path
        input_label_folder = self.txt_labels

        train_images_folder = os.path.join(output_folder, 'train', 'images')
        train_labels_folder = os.path.join(output_folder, 'train', 'labels')
        val_images_folder = os.path.join(output_folder, 'val', 'images')
        val_labels_folder = os.path.join(output_folder, 'val', 'labels')

        os.makedirs(train_images_folder, exist_ok=True)
        os.makedirs(train_labels_folder, exist_ok=True)
        os.makedirs(val_images_folder, exist_ok=True)
        os.makedirs(val_labels_folder, exist_ok=True)

        # 获取所有图像文件列表
        images = [f for f in os.listdir(input_image_folder) if f.endswith('.jpg') or f.endswith('.png')]

        # 随机打乱图像文件列表
        random.shuffle(images)

        # 计算验证集的数量
        val_size = int(len(images) * test_ratio)

        # 划分验证集和训练集
        val_images = images[:val_size]
        train_images = images[val_size:]

        # 复制验证集图像和标签
        for image in val_images:
            label = os.path.splitext(image)[0] + '.txt'
            if os.path.exists(os.path.join(input_label_folder, label)):
                shutil.copy(os.path.join(input_image_folder, image), os.path.join(val_images_folder, image))
                shutil.copy(os.path.join(input_label_folder, label), os.path.join(val_labels_folder, label))
                logger.debug(
                    f'【{os.path.join(input_image_folder, image)}】 --> 【{os.path.join(val_images_folder, image)}】')
                logger.success(
                    f'【{os.path.join(input_label_folder, label)}】 --> 【{os.path.join(val_labels_folder, label)}】')
            else:
                logger.error(f"Warning: Label file {label} not found for image {image}")

        # 复制训练集图像和标签
        for image in train_images:
            label = os.path.splitext(image)[0] + '.txt'
            if os.path.exists(os.path.join(input_label_folder, label)):
                shutil.copy(os.path.join(input_image_folder, image), os.path.join(train_images_folder, image))
                shutil.copy(os.path.join(input_label_folder, label), os.path.join(train_labels_folder, label))
                logger.debug(
                    f'【{os.path.join(input_image_folder, image)}】 --> 【{os.path.join(train_images_folder, image)}】')
                logger.success(
                    f'【{os.path.join(input_label_folder, label)}】 --> 【{os.path.join(train_labels_folder, label)}】')
            else:
                logger.error(f"Warning: Label file {label} not found for image {image}")

    def start(self):
        '''启动'''
        time.sleep(1)
        self.xml_img_split()
        time.sleep(1)
        self.xml_to_txt()
        time.sleep(1)
        self.to_dataset(0.2)


if __name__ == '__main__':
    base_dir = os.path.dirname(__file__)
    log_path = os.path.join(base_dir, 'log.log')
    if os.path.exists(log_path):
        os.unlink(log_path)

    logger.add(log_path)
    print('...第一层文件夹')
    print('     -->第二层文件夹↓')
    print('       -->[xml和img混合文件夹]')
    print('\n')
    status = input('请确认xml和图片在同一个文件夹(99:确认)(任意值:取消):')
    if status in (99, '99'):
        a = AnalysisXML()
        a.start()
        logger.success('系统完成')
        for i in (3, 2, 1):
            time.sleep(1)
            logger.success(f'{i}/秒')
    else:
        logger.error('系统退出!')
        for i in (3, 2, 1):
            time.sleep(1)
            logger.error(f'{i}/秒')
相关推荐
2501_941329724 小时前
YOLOv8-SEAMHead改进实战:书籍检测与识别系统优化方案
人工智能·yolo·目标跟踪
Hgfdsaqwr7 小时前
Django全栈开发入门:构建一个博客系统
jvm·数据库·python
开发者小天7 小时前
python中For Loop的用法
java·服务器·python
老百姓懂点AI7 小时前
[RAG实战] 向量数据库选型与优化:智能体来了(西南总部)AI agent指挥官的长短期记忆架构设计
python
2501_941837268 小时前
停车场车辆检测与识别系统-YOLOv26算法改进与应用分析
算法·yolo
喵手9 小时前
Python爬虫零基础入门【第九章:实战项目教学·第15节】搜索页采集:关键词队列 + 结果去重 + 反爬友好策略!
爬虫·python·爬虫实战·python爬虫工程化实战·零基础python爬虫教学·搜索页采集·关键词队列
Suchadar9 小时前
if判断语句——Python
开发语言·python
ʚB҉L҉A҉C҉K҉.҉基҉德҉^҉大10 小时前
自动化机器学习(AutoML)库TPOT使用指南
jvm·数据库·python
喵手10 小时前
Python爬虫零基础入门【第九章:实战项目教学·第14节】表格型页面采集:多列、多行、跨页(通用表格解析)!
爬虫·python·python爬虫实战·python爬虫工程化实战·python爬虫零基础入门·表格型页面采集·通用表格解析
2501_9361460410 小时前
传送带上罐体识别与分类_YOLOv26模型实现与优化_1
yolo·分类·数据挖掘