python --yolo混合文件xml和img整理

python 复制代码
import os
import random
import time
from pathlib import Path
import shutil
import tkinter as tk
from tkinter import filedialog
from loguru import logger
import xml.etree.ElementTree as ET


class AnalysisXML(object):
    '''清洗xml'''

    def __init__(self):
        root = tk.Tk()
        root.withdraw()
        root.attributes('-topmost', 1)
        self.directory = filedialog.askdirectory()  # 打开目录选择器
        root.destroy()
        logger.warning(f'路径选择:【{self.directory}】')

    def xml_img_split(self):
        '''分割图片和xml'''
        logger.info(f'---------------------------分割图片和xml------------------------')
        self.images_path = Path(self.directory).parent.joinpath('images')
        self.xml_labels_path = Path(self.directory).parent.joinpath('xml_labels')

        self.images_path.mkdir(parents=True, exist_ok=True)
        self.xml_labels_path.mkdir(parents=True, exist_ok=True)

        for i in Path(self.directory).iterdir():
            if i.suffix == '.xml':
                new_path = self.xml_labels_path.joinpath(i.name)
                logger.debug(f'移动:【{i}】 -> 【{new_path}】')
                shutil.copy(str(i), str(new_path))

            if i.suffix in ('.jpg', '.png'):
                new_path = self.images_path.joinpath(i.name)
                logger.debug(f'移动:【{i}】 -> 【{new_path}】')
                shutil.copy(str(i), str(new_path))

    def xml_to_txt(self):
        '''xml转txt'''
        logger.info(f'----------------------------正在将xml转为txt-----------------------')
        self.txt_labels = self.xml_labels_path.joinpath('labels')  # 替换为实际的输出TXT文件夹路径
        os.makedirs(self.txt_labels, exist_ok=True)

        names_set = set()
        for filename in os.listdir(self.xml_labels_path):
            if filename.endswith('.xml'):
                tree = ET.parse(os.path.join(self.xml_labels_path, filename))
                root = tree.getroot()

                for obj in root.findall('object'):
                    name = obj.find('name').text
                    names_set.add(name)
        # 输出所有的name
        categories = []
        for name in names_set:
            categories.append(name)
        logger.success(f'标注的内容names:【{categories}】')

        category_to_index = {category: index for index, category in enumerate(categories)}

        # 遍历输入文件夹中的所有XML文件
        for filename in os.listdir(self.xml_labels_path):
            if filename.endswith('.xml'):
                xml_path = os.path.join(self.xml_labels_path, filename)
                logger.warning(f'正在处理:【{xml_path}】')
                # 解析XML文件
                tree = ET.parse(xml_path)
                root = tree.getroot()
                # 提取图像的尺寸
                size = root.find('size')
                width = int(size.find('width').text)
                height = int(size.find('height').text)
                # 存储name和对应的归一化坐标
                objects = []
                # 遍历XML中的object标签
                for obj in root.findall('object'):
                    name = obj.find('name').text
                    if name in category_to_index:
                        category_index = category_to_index[name]
                    else:
                        continue  # 如果name不在指定类别中,跳过该object
                    bndbox = obj.find('bndbox')
                    xmin = int(bndbox.find('xmin').text)
                    ymin = int(bndbox.find('ymin').text)
                    xmax = int(bndbox.find('xmax').text)
                    ymax = int(bndbox.find('ymax').text)
                    # 转换为中心点坐标和宽高
                    x_center = (xmin + xmax) / 2.0
                    y_center = (ymin + ymax) / 2.0
                    w = xmax - xmin
                    h = ymax - ymin
                    # 归一化
                    x = x_center / width
                    y = y_center / height
                    w = w / width
                    h = h / height
                    objects.append(f"{category_index} {x:.6f} {y:.6f} {w:.6f} {h:.6f}")
                # 输出结果到对应的TXT文件
                txt_filename = os.path.splitext(filename)[0] + '.txt'
                txt_path = os.path.join(self.txt_labels, txt_filename)
                with open(txt_path, 'w') as f:
                    for obj in objects:
                        f.write(obj + '\n')

    def to_dataset(self, test_ratio):
        '''整理为dataset'''
        output_folder = os.path.join(os.path.dirname(self.directory), 'datasets')

        input_image_folder = self.images_path
        input_label_folder = self.txt_labels

        train_images_folder = os.path.join(output_folder, 'train', 'images')
        train_labels_folder = os.path.join(output_folder, 'train', 'labels')
        val_images_folder = os.path.join(output_folder, 'val', 'images')
        val_labels_folder = os.path.join(output_folder, 'val', 'labels')

        os.makedirs(train_images_folder, exist_ok=True)
        os.makedirs(train_labels_folder, exist_ok=True)
        os.makedirs(val_images_folder, exist_ok=True)
        os.makedirs(val_labels_folder, exist_ok=True)

        # 获取所有图像文件列表
        images = [f for f in os.listdir(input_image_folder) if f.endswith('.jpg') or f.endswith('.png')]

        # 随机打乱图像文件列表
        random.shuffle(images)

        # 计算验证集的数量
        val_size = int(len(images) * test_ratio)

        # 划分验证集和训练集
        val_images = images[:val_size]
        train_images = images[val_size:]

        # 复制验证集图像和标签
        for image in val_images:
            label = os.path.splitext(image)[0] + '.txt'
            if os.path.exists(os.path.join(input_label_folder, label)):
                shutil.copy(os.path.join(input_image_folder, image), os.path.join(val_images_folder, image))
                shutil.copy(os.path.join(input_label_folder, label), os.path.join(val_labels_folder, label))
                logger.debug(
                    f'【{os.path.join(input_image_folder, image)}】 --> 【{os.path.join(val_images_folder, image)}】')
                logger.success(
                    f'【{os.path.join(input_label_folder, label)}】 --> 【{os.path.join(val_labels_folder, label)}】')
            else:
                logger.error(f"Warning: Label file {label} not found for image {image}")

        # 复制训练集图像和标签
        for image in train_images:
            label = os.path.splitext(image)[0] + '.txt'
            if os.path.exists(os.path.join(input_label_folder, label)):
                shutil.copy(os.path.join(input_image_folder, image), os.path.join(train_images_folder, image))
                shutil.copy(os.path.join(input_label_folder, label), os.path.join(train_labels_folder, label))
                logger.debug(
                    f'【{os.path.join(input_image_folder, image)}】 --> 【{os.path.join(train_images_folder, image)}】')
                logger.success(
                    f'【{os.path.join(input_label_folder, label)}】 --> 【{os.path.join(train_labels_folder, label)}】')
            else:
                logger.error(f"Warning: Label file {label} not found for image {image}")

    def start(self):
        '''启动'''
        time.sleep(1)
        self.xml_img_split()
        time.sleep(1)
        self.xml_to_txt()
        time.sleep(1)
        self.to_dataset(0.2)


if __name__ == '__main__':
    base_dir = os.path.dirname(__file__)
    log_path = os.path.join(base_dir, 'log.log')
    if os.path.exists(log_path):
        os.unlink(log_path)

    logger.add(log_path)
    print('...第一层文件夹')
    print('     -->第二层文件夹↓')
    print('       -->[xml和img混合文件夹]')
    print('\n')
    status = input('请确认xml和图片在同一个文件夹(99:确认)(任意值:取消):')
    if status in (99, '99'):
        a = AnalysisXML()
        a.start()
        logger.success('系统完成')
        for i in (3, 2, 1):
            time.sleep(1)
            logger.success(f'{i}/秒')
    else:
        logger.error('系统退出!')
        for i in (3, 2, 1):
            time.sleep(1)
            logger.error(f'{i}/秒')
相关推荐
极客小云4 小时前
【ComfyUI API 自动化利器:comfyui_xy Python 库使用详解】
网络·python·自动化·comfyui
闲人编程5 小时前
Elasticsearch搜索引擎集成指南
python·elasticsearch·搜索引擎·jenkins·索引·副本·分片
痴儿哈哈5 小时前
自动化机器学习(AutoML)库TPOT使用指南
jvm·数据库·python
花酒锄作田5 小时前
SQLAlchemy中使用UPSERT
python·sqlalchemy
SoleMotive.5 小时前
一个准程序员的健身日志:用算法调试我的增肌计划
python·程序员·健身·职业转型
亓才孓5 小时前
[Properties]写配置文件前,必须初始化Properties(引用变量没执行有效对象,调用方法会报空指针错误)
开发语言·python
Bruk.Liu5 小时前
(LangChain 实战14):基于 ChatMessageHistory 自定义实现对话记忆功能
人工智能·python·langchain·agent
大江东去浪淘尽千古风流人物5 小时前
【VLN】VLN(Vision-and-Language Navigation视觉语言导航)算法本质,范式难点及解决方向(1)
人工智能·python·算法
Swift社区5 小时前
Gunicorn 与 Uvicorn 部署 Python 后端详解
开发语言·python·gunicorn
Coinsheep6 小时前
SSTI-flask靶场搭建及通关
python·flask·ssti