如何在pycharm中使用Yolo

✅ 前提条件

  1. 已安装 Python 3.8+(建议 3.9~3.11)
  2. 已安装 PyCharm(社区版或专业版均可)
  3. 确保 pip 是最新版本

🛠️ 步骤一:创建项目并配置 Python 解释器(使用 venv)

1. 打开 PyCharm → 创建新项目

  • 选择 "New Project"
  • 项目名称如 yolo_project
  • 在 "Python Interpreter" 部分:
    • 选择 "New environment using Virtualenv"(PyCharm 默认使用 venv)
    • 确保 Base interpreter 指向你安装的 Python(如 python3.10
    • 勾选 "Inherit global site-packages" 不要勾选(保持干净环境)

⚠️ 注意:这里使用的是 Python 内置的 venv,不是 conda。

2. 等待项目创建完成

PyCharm 会自动创建一个 .venv 文件夹(或 venv),包含独立的 Python 环境。


📦 步骤二:安装 YOLO 所需依赖

1. 打开 PyCharm 终端(Terminal)

  • 底部菜单栏 → Terminal(或快捷键 Alt+F12)
  • 确保当前激活的是项目虚拟环境(终端提示符前应有 (yolo_project) 或类似)

2. 升级 pip(可选但推荐)

python 复制代码
python -m pip install --upgrade pip

3. 安装 Ultralytics(YOLOv8 官方库)

python 复制代码
pip install ultralytics

这个包会自动安装 PyTorch、torchvision、opencv-python、numpy 等依赖。
💡 如果你有 GPU 并希望使用 CUDA,请先确认你的 CUDA 版本,然后按需安装对应 PyTorch。例如:

python 复制代码
# 示例:CUDA 11.8
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
pip install ultralytics

否则,默认会安装 CPU 版本的 PyTorch。


🧪 步骤三:验证安装

在 PyCharm 中新建一个 Python 文件,例如 test_yolo.py,输入以下代码:

python 复制代码
from ultralytics import YOLO

# 加载预训练模型(首次运行会自动下载)
model = YOLO("yolov8n.pt")

# 运行预测(可选:替换为你自己的图片路径)
results = model.predict(source="https://ultralytics.com/images/bus.jpg", save=True)
print("预测完成,结果保存在 runs/detect 目录下")

运行该脚本:

  • 首次运行会下载 yolov8n.pt(约几 MB)
  • 成功运行说明环境配置正确!

运行该脚本将会自动下载bus.jpg图像,图像内容为:

经过yolo识别后,在runs/detect/predict/bus.jpg中输出如下的图像内容。


📁 步骤四:(可选)管理依赖(生成 requirements.txt)

在终端中执行:

python 复制代码
pip freeze > requirements.txt

这样便于以后复现环境。


🔒 注意事项

  • 不要混用 conda 和 pip(既然不用 conda,就全程用 pip + venv)
  • 如果遇到权限问题,在 Windows 上以普通用户运行即可;Linux/macOS 避免使用 sudo pip
  • 若 PyCharm 未识别虚拟环境,可手动设置:
    • File → Settings → Project → Python Interpreter → Add → Existing Environment → 指向 .venv/bin/python(Linux/macOS)或 .venv\Scripts\python.exe(Windows)

✅ 总结

步骤 操作
1 PyCharm 新建项目,使用内置 venv
2 终端中 pip install ultralytics
3 编写测试脚本验证 YOLO 能运行
4 (可选)导出 requirements.txt

这样你就成功在 不使用 Conda/Miniconda 的情况下,在 PyCharm 中部署了 YOLO 的运行环境!

相关推荐
hui函数12 小时前
python全栈入门到实战【基础篇 03】入门实操:第一个Python程序 + PyCharm使用 + 输入输出全解析
开发语言·python·pycharm
TonyLee01712 小时前
VSCode使用SSH FS插件进行远程连接(适配远程低版本系统)
ide·vscode·ssh
njsgcs14 小时前
ue4 开放exec接口 vscode mcp铺垫 unreal.register_slate_post_tick_callback
ide·vscode·ue4
肖邦德夜曲14 小时前
SSH连接:mobaXterm(windows)与VSCODE
ide·vscode·ssh
qq_1780570715 小时前
IntelliJ IDEA is not responding报错解决
java·ide·intellij-idea
MS1896377374615 小时前
乾芯课堂系列(二)乾芯DSP开发环境 – QX-IDE安装使用入门
ide·mcu·dsp开发
山上春15 小时前
把 Odoo 日志升级成 IDE 级体验:彩色高亮、可点击源码、统一格式(VS Code)
ide
棒棒的皮皮1 天前
【深度学习】YOLO核心原理介绍
人工智能·深度学习·yolo·计算机视觉
海天一色y1 天前
Pycharm(十八)进程相关内容
python·pycharm
吃人陈乐游刘1 天前
08实战经验yoloV8部署(2026年01月)
yolo