中国计算机学会(CCF)推荐学术会议-B(交叉/综合/新兴):CogSci 2026

CogSci 2026

CogSci 2026 will be fully hybrid with streaming of the entire program, except for workshops (which will all be in-person). Presenters can choose to present in-person in Rio de Janeiro or virtually, and virtual attendees will be able to view the entire program synchronously. Virtual talks will be presented synchronously throughout the program, and virtual posters will be available for asynchronous interaction via the conference app, as well as synchronous online interaction via video conferencing.

重要信息

CCF推荐:B(交叉/综合/新兴)

录用率:72.3%(899/1242,2024年)

时间地点:2026年7月22日-里约热内卢·巴西

截稿时间:2026年2月2日

Call for Papers

The Cognitive Science Society invites members and non-members to submit their work for individual oral and poster presentations, as well as contributed symposia and pre-conference workshops and tutorials for the upcoming CogSci 2026 Conference, taking place from July 22-25, Rio de Janeiro.

SUBMISSION GUIDELINES

Submissions to CogSci must relate to the study of the mind.

All submissions (with the exception of abstract-only publications) must be made electronically as PDF files using the templates provided.

All files must be uploaded via the PCS submission portal.

Abstracts may only be submitted as plain text that is entered (or copied and pasted) directly into an online submission form available via the PCS submission portal.

Abstract-only publications may not make use of formatted text.

All authors, primary and secondary, must have a current PCS submission portal account to accurately reflect affiliations in the proceedings.

相关推荐
数据光子几秒前
【YOLO数据集】国内交通信号检测
人工智能·python·安全·yolo·目标检测·目标跟踪
霍格沃兹测试开发学社测试人社区6 分钟前
GitLab 测试用例:实现 Web 场景批量自动化执行的方法
人工智能·智能体
Mintopia7 分钟前
🤖 AI 应用自主决策的可行性 — 一场从逻辑电路到灵魂选择的奇妙旅程
人工智能·aigc·全栈
百***78757 分钟前
2026 优化版 GPT-5.2 国内稳定调用指南:API 中转实操与成本优化
开发语言·人工智能·python
:mnong8 分钟前
辅助学习神经网络
人工智能·神经网络·学习
jinyeyiqi20269 分钟前
城市噪声监测设备技术解析及智慧城市应用方案 金叶仪器全场景适配的城市噪声监测设备
人工智能·智慧城市
光锥智能10 分钟前
蚂蚁阿福月活用户已达3000万,OpenAI跟进发布ChatGPT Health
人工智能·chatgpt
空山新雨后、13 分钟前
Masked AutoEncoder(MAE)详解:高 Mask 率如何造就强视觉表征
人工智能·深度学习·chatgpt·多模态
韦东东13 分钟前
行业资讯日报自动化:从采集到 LLM 生成的全链路拆解(以政务网站为例)
运维·人工智能·自动化·大模型·llm·政务·行业资讯
Francek Chen20 分钟前
【自然语言处理】应用06:针对序列级和词元级应用微调BERT
人工智能·pytorch·深度学习·自然语言处理·bert