深度学习洪水分割系统2:含训练测试代码和数据集

第一步:准备数据

洪水分割-深度学习图像分割数据集

洪水分割数据,可直接应用到一些常用深度学习分割算法中,比如FCN、Unet、SegNet、DeepLabV1、DeepLabV2、DeepLabV3、DeepLabV3+、PSPNet、RefineNet、HRnet、Mask R-CNN、Segformer、DUCK-Net模型等

数据集总共有663对图片,数据质量非常高,甚至可应用到工业落地的项目中

第二步:搭建模型

本文选择ENet,其网络结构分别如下:

第三步:训练代码

1)损失函数为:dice_loss + focal_loss

2)网络代码:

python 复制代码
class ENet(nn.Module):
    """Generate the ENet model.

    Keyword arguments:
    - num_classes (int): the number of classes to segment.
    - encoder_relu (bool, optional): When ``True`` ReLU is used as the
    activation function in the encoder blocks/layers; otherwise, PReLU
    is used. Default: False.
    - decoder_relu (bool, optional): When ``True`` ReLU is used as the
    activation function in the decoder blocks/layers; otherwise, PReLU
    is used. Default: True.

    """

    def __init__(self, num_classes, encoder_relu=False, decoder_relu=True):
        super().__init__()

        self.initial_block = InitialBlock(3, 16, relu=encoder_relu)

        # Stage 1 - Encoder
        self.downsample1_0 = DownsamplingBottleneck(
            16,
            64,
            return_indices=True,
            dropout_prob=0.01,
            relu=encoder_relu)
        self.regular1_1 = RegularBottleneck(
            64, padding=1, dropout_prob=0.01, relu=encoder_relu)
        self.regular1_2 = RegularBottleneck(
            64, padding=1, dropout_prob=0.01, relu=encoder_relu)
        self.regular1_3 = RegularBottleneck(
            64, padding=1, dropout_prob=0.01, relu=encoder_relu)
        self.regular1_4 = RegularBottleneck(
            64, padding=1, dropout_prob=0.01, relu=encoder_relu)

        # Stage 2 - Encoder
        self.downsample2_0 = DownsamplingBottleneck(
            64,
            128,
            return_indices=True,
            dropout_prob=0.1,
            relu=encoder_relu)
        self.regular2_1 = RegularBottleneck(
            128, padding=1, dropout_prob=0.1, relu=encoder_relu)
        self.dilated2_2 = RegularBottleneck(
            128, dilation=2, padding=2, dropout_prob=0.1, relu=encoder_relu)
        self.asymmetric2_3 = RegularBottleneck(
            128,
            kernel_size=5,
            padding=2,
            asymmetric=True,
            dropout_prob=0.1,
            relu=encoder_relu)
        self.dilated2_4 = RegularBottleneck(
            128, dilation=4, padding=4, dropout_prob=0.1, relu=encoder_relu)
        self.regular2_5 = RegularBottleneck(
            128, padding=1, dropout_prob=0.1, relu=encoder_relu)
        self.dilated2_6 = RegularBottleneck(
            128, dilation=8, padding=8, dropout_prob=0.1, relu=encoder_relu)
        self.asymmetric2_7 = RegularBottleneck(
            128,
            kernel_size=5,
            asymmetric=True,
            padding=2,
            dropout_prob=0.1,
            relu=encoder_relu)
        self.dilated2_8 = RegularBottleneck(
            128, dilation=16, padding=16, dropout_prob=0.1, relu=encoder_relu)

        # Stage 3 - Encoder
        self.regular3_0 = RegularBottleneck(
            128, padding=1, dropout_prob=0.1, relu=encoder_relu)
        self.dilated3_1 = RegularBottleneck(
            128, dilation=2, padding=2, dropout_prob=0.1, relu=encoder_relu)
        self.asymmetric3_2 = RegularBottleneck(
            128,
            kernel_size=5,
            padding=2,
            asymmetric=True,
            dropout_prob=0.1,
            relu=encoder_relu)
        self.dilated3_3 = RegularBottleneck(
            128, dilation=4, padding=4, dropout_prob=0.1, relu=encoder_relu)
        self.regular3_4 = RegularBottleneck(
            128, padding=1, dropout_prob=0.1, relu=encoder_relu)
        self.dilated3_5 = RegularBottleneck(
            128, dilation=8, padding=8, dropout_prob=0.1, relu=encoder_relu)
        self.asymmetric3_6 = RegularBottleneck(
            128,
            kernel_size=5,
            asymmetric=True,
            padding=2,
            dropout_prob=0.1,
            relu=encoder_relu)
        self.dilated3_7 = RegularBottleneck(
            128, dilation=16, padding=16, dropout_prob=0.1, relu=encoder_relu)

        # Stage 4 - Decoder
        self.upsample4_0 = UpsamplingBottleneck(
            128, 64, dropout_prob=0.1, relu=decoder_relu)
        self.regular4_1 = RegularBottleneck(
            64, padding=1, dropout_prob=0.1, relu=decoder_relu)
        self.regular4_2 = RegularBottleneck(
            64, padding=1, dropout_prob=0.1, relu=decoder_relu)

        # Stage 5 - Decoder
        self.upsample5_0 = UpsamplingBottleneck(
            64, 16, dropout_prob=0.1, relu=decoder_relu)
        self.regular5_1 = RegularBottleneck(
            16, padding=1, dropout_prob=0.1, relu=decoder_relu)
        self.transposed_conv = nn.ConvTranspose2d(
            16,
            num_classes,
            kernel_size=3,
            stride=2,
            padding=1,
            bias=False)

    def forward(self, x):
        # Initial block
        input_size = x.size()
        x = self.initial_block(x)

        # Stage 1 - Encoder
        stage1_input_size = x.size()
        x, max_indices1_0 = self.downsample1_0(x)
        x = self.regular1_1(x)
        x = self.regular1_2(x)
        x = self.regular1_3(x)
        x = self.regular1_4(x)

        # Stage 2 - Encoder
        stage2_input_size = x.size()
        x, max_indices2_0 = self.downsample2_0(x)
        x = self.regular2_1(x)
        x = self.dilated2_2(x)
        x = self.asymmetric2_3(x)
        x = self.dilated2_4(x)
        x = self.regular2_5(x)
        x = self.dilated2_6(x)
        x = self.asymmetric2_7(x)
        x = self.dilated2_8(x)

        # Stage 3 - Encoder
        x = self.regular3_0(x)
        x = self.dilated3_1(x)
        x = self.asymmetric3_2(x)
        x = self.dilated3_3(x)
        x = self.regular3_4(x)
        x = self.dilated3_5(x)
        x = self.asymmetric3_6(x)
        x = self.dilated3_7(x)

        # Stage 4 - Decoder
        x = self.upsample4_0(x, max_indices2_0, output_size=stage2_input_size)
        x = self.regular4_1(x)
        x = self.regular4_2(x)

        # Stage 5 - Decoder
        x = self.upsample5_0(x, max_indices1_0, output_size=stage1_input_size)
        x = self.regular5_1(x)
        x = self.transposed_conv(x, output_size=input_size)

        return x

第四步:统计一些指标(训练过程中的loss和miou)

第五步:推理预测代码

第六步:整个工程的内容

项目完整文件下载请见演示与介绍视频的简介处给出:➷➷➷

https://www.bilibili.com/video/BV1NC6ZB6ETh/

相关推荐
绿洲-_-2 小时前
MBHM_DATASET_GUIDE
深度学习·机器学习
万行2 小时前
机器学习&第二章线性回归
人工智能·python·机器学习·线性回归
小宇的天下2 小时前
HBM(高带宽内存)深度解析:先进封装视角的技术指南
网络·人工智能
rongcj2 小时前
2026,“硅基经济”的时代正在悄然来临
人工智能
狼叔也疯狂2 小时前
英语启蒙SSS绘本第一辑50册高清PDF可打印
人工智能·全文检索
万行3 小时前
机器学习&第四章支持向量机
人工智能·机器学习·支持向量机
幻云20103 小时前
Next.js之道:从入门到精通
人工智能·python
予枫的编程笔记3 小时前
【Java集合】深入浅出 Java HashMap:从链表到红黑树的“进化”之路
java·开发语言·数据结构·人工智能·链表·哈希算法
llddycidy3 小时前
峰值需求预测中的机器学习:基础、趋势和见解(最新文献)
网络·人工智能·深度学习