STM32校准读取激光测距传感器VL53L0X距离数据

STM32校准读取激光测距传感器VL53L0X距离数据

VL53L0X是ST公司出品的一款激光测距传感器,LV53L0X采用940nm垂直腔面发射激光器(Vertical-Cavity Surface-Emitting Laser,简称VCSEL)发射出激光,激光碰到障碍物后反射回来被VL53L0X接收到,测量激光在空气中的传播时间,进而得到距离。

VL53L0X的测距范围达到2000mm,比较准确范围30mm~1500mm。可以和VL6180X互补实现近远距离覆盖的测试。市面上有一些不同外观的模块:

这里介绍通过STM32芯片进行连接和测距数据读取的实现。

电路连接

既然是ST出的芯片,自然支持3.3V供电,和STM32可以直接进行连接。STM32采用Open-drain方式和VL53L0X的连接如下所示:

除了用于I2C通讯的SCL, SDA外,主要有XSHUT和GPIO1两个管脚,XSHUT用于关电芯片,GPIO1目前是作为中断输出给STM32, 作为距离测试结果可读取的指示,另外,如果不用GPIO1,则可以直接通过I2C总线读取内部寄存器信息,获得一致的指示信息。

操作模式

VL53L0X有特定的操作模式,首先要进行校准,校准后再进行测试:

如果应用环境是相同的,则可以把校准值保存起来,下次上电或复位后,读取校准值进行应用,则不用每次都进行校准。

针对VL53L0X,ST公司提供了用于STM32开发的VL53L0X库,通过重载部分库函数尤其是STM32的管脚连接关系,就可以实现对VL53L0X的访问。

STM32CUBEIDE工程配置

这里以STM32G031F8P6(64K Flash)和STM32CUBEIDE开发环境为例,实现VL53L0X的访问控制。

首先建立基本工程并配置时钟系统:

GPIO模拟I2C和硬件UART采用内部时钟也足够:

然后配置UART2作为打印输出端口:

这里选择PA0作为SCL, PA1作为SDA, PA4输出XSHUT, PA5作为中断输入。对GPIO管脚进行配置:

保存并产生基本代码:

STM32工程代码

首先将VL53L0X的库文件,放到工程目录里:

I2C模拟时序用到的微秒延时函数,参考: STM32 HAL us delay(微秒延时)的指令延时实现方式及优化

STM32串口打印的实现,参考: STM32 UART串口printf函数应用及浮点打印代码空间节省 (HAL)

因为VL53L0X的库文件占用了一些编译后FLASH空间,采用减少代码编译size的方式,参考: STM32 region `FLASH' overflowed by xxx bytes 问题解决

VL53L0X的校准参数,会存放于内部Flash的末页,实现原理参考: STM32 内部FLASH用作用户数据区Byte操作函数设计 (HAL)

然后引入管脚定义,并修改相应的库文件,并设计测试逻辑。这里的功能由串口收到单字节指令进行操作:

0x01: 实施校准,实施校准前将VL53L0X模块对准参考测试平面10cm

0x02: 运行非中断接收模式的距离测试输出

0x03: 运行中断接收模式的距离测试输出

0x04: 保存校准参数进内部Flash末页

0x05: 从内部Flash末页读取校准参数

0x05: 软件复位STM32

main.c文件的代码如下:

csharp 复制代码
/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2022 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  * Written by Pegasus Yu in 2022.08
  * Note: re-power_up VL53L0X after downloading version. Or the calibration test will fail.
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "usart.h"
#include "vl53l0x.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
//us delay functions
__IO float usDelayBase;
void PY_usDelayTest(void)
{
  __IO uint32_t firstms, secondms;
  __IO uint32_t counter = 0;

  firstms = HAL_GetTick()+1;
  secondms = firstms+1;

  while(uwTick!=firstms) ;

  while(uwTick!=secondms) counter++;

  usDelayBase = ((float)counter)/1000;
}

void PY_Delay_us_t(uint32_t Delay)
{
  __IO uint32_t delayReg;
  __IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}

void PY_usDelayOptimize(void)
{
  __IO uint32_t firstms, secondms;
  __IO float coe = 1.0;

  firstms = HAL_GetTick();
  PY_Delay_us_t(1000000) ;
  secondms = HAL_GetTick();

  coe = ((float)1000)/(secondms-firstms);
  usDelayBase = coe*usDelayBase;
}

void PY_Delay_us(uint32_t Delay)
{
  __IO uint32_t delayReg;

  __IO uint32_t msNum = Delay/1000;
  __IO uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase);

  if(msNum>0) HAL_Delay(msNum);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define us_num 10

#define SCL_OUT_H HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_SET)
#define SCL_OUT_L HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_RESET)
#define SDA_OUT_H HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_SET)
#define SDA_OUT_L HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_RESET)
#define SDA_IN HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_1)
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
void I2C_Init(void)
{
	SCL_OUT_H;
	SDA_OUT_H;
	PY_Delay_us_t(1000000) ; //1s delay
}

void I2C_Start(void)
{
	PY_Delay_us_t(us_num) ;
	SDA_OUT_H;
	SCL_OUT_H;
	PY_Delay_us_t(us_num/2) ;
	SDA_OUT_L;
	PY_Delay_us_t(us_num/2) ;
	SCL_OUT_L;
}

void I2C_Stop(void)
{
	SCL_OUT_L;
	PY_Delay_us_t(us_num) ;
	SDA_OUT_L;
	PY_Delay_us_t(us_num) ;
	SCL_OUT_H;
	PY_Delay_us_t(us_num) ;
	SDA_OUT_H;
	PY_Delay_us_t(us_num) ;
}

void I2C_Write_Ack(void)
{

    PY_Delay_us_t(us_num/2) ;
	SDA_OUT_L;
	PY_Delay_us_t(us_num/2) ;
	SCL_OUT_H;
	PY_Delay_us_t(us_num) ;
	SCL_OUT_L;
	SDA_OUT_H;

}

uint8_t I2C_Read_Ack(void)
{
	uint8_t status=0;

	SCL_OUT_L;
	PY_Delay_us_t(us_num/2) ;
	SDA_OUT_H;
	PY_Delay_us_t(us_num/2) ;
	status = SDA_IN;
	SCL_OUT_H;
	PY_Delay_us_t(us_num) ;
	SCL_OUT_L;
	SDA_OUT_L;

	return status;

}


void I2C_Send_Byte(uint8_t txd){


    for(uint8_t i=0;i<8;i++)
    {
    	PY_Delay_us_t(us_num/2) ;
        if((txd&0x80)>>7) SDA_OUT_H;
        else SDA_OUT_L;
        txd<<=1;
        PY_Delay_us_t(us_num/2) ;
        SCL_OUT_H;
        PY_Delay_us_t(us_num) ;
		SCL_OUT_L;
    }

    SDA_OUT_L;
}

uint8_t I2C_Read_Byte(unsigned char rdack)
{
	uint8_t rxd=0;


    for(uint8_t i=0;i<8;i++ )
	{
    	SCL_OUT_L;
    	PY_Delay_us_t(us_num/2) ;
    	SDA_OUT_H;
    	PY_Delay_us_t(us_num/2) ;
    	SCL_OUT_H;
        rxd<<=1;
        if(SDA_IN) rxd++;
        PY_Delay_us_t(us_num) ;
    }

    SCL_OUT_L;
    SDA_OUT_H;

    if (rdack) I2C_Write_Ack();

    return rxd;
}

void VL53L0X_WRITE_1Byte(uint8_t WrAddr, uint8_t data)
{
	  uint8_t daddr = 0x52; //VL53L0X device address (0x29<<1)

	  I2C_Start();
	  I2C_Send_Byte(daddr);
	  I2C_Read_Ack();
  	  I2C_Send_Byte(WrAddr);
  	  I2C_Read_Ack();
  	  I2C_Send_Byte(data);
  	  I2C_Read_Ack();
  	  I2C_Stop();
}

uint8_t VL53L0X_READ_1Byte(uint8_t RdAddr)
{

	  uint8_t RegValue = 0;
	  uint8_t daddr = 0x52; //VL53L0X device address (0x29<<1)

	  I2C_Start();
	  I2C_Send_Byte(daddr);
	  I2C_Read_Ack();
  	  I2C_Send_Byte(RdAddr);
  	  I2C_Read_Ack();

  	  I2C_Start();
	  I2C_Send_Byte(daddr+1);
	  I2C_Read_Ack();
	  RegValue=I2C_Read_Byte(0);
  	  I2C_Stop();

	  return RegValue;
}

uint16_t VL53L0X_READ_2Byte(uint8_t RdAddr)
{

	  uint8_t RegValueH = 0, RegValueL = 0;
	  uint8_t daddr = 0x52; //VL53L0X device address (0x29<<1)

	  I2C_Start();
	  I2C_Send_Byte(daddr);
	  I2C_Read_Ack();
  	  I2C_Send_Byte(RdAddr);
  	  I2C_Read_Ack();

  	  I2C_Start();
	  I2C_Send_Byte(daddr+1);
	  I2C_Read_Ack();
	  RegValueL=I2C_Read_Byte(1);
	  RegValueH=I2C_Read_Byte(0);
  	  I2C_Stop();

	  return (((uint16_t)RegValueH)<<8)|RegValueL;
}
/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
UART_HandleTypeDef huart2;

/* USER CODE BEGIN PV */

#define VL53L0X_CALI_PARAM_FLASH_ADDRESS FLASH_BASE+FLASH_SIZE-128 //Internal Flash space saved for storing VL53L0X calibration parameters

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART2_UART_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t int_enable = 0;
uint8_t alarm_flag = 0;

uint8_t Uart2_RxBuff[8];
uint8_t cmd = 0;

extern _vl53l0x_adjust Vl53l0x_adjust;

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_USART2_UART_Init();
  /* USER CODE BEGIN 2 */
  PY_usDelayTest();
  PY_usDelayOptimize();

  Uart2_RxBuff[0] = 0x00;
  HAL_UART_Receive_IT(&huart2, Uart2_RxBuff, 1);

  VL53L0X_Xshut_L;
  PY_Delay_us_t(30000);
  VL53L0X_Xshut_H;
  PY_Delay_us_t(30000);

  printf("STM32 Starts!\r\n");
  printf("0xC0: %d\r\n", VL53L0X_READ_1Byte(0xc0));
  printf("0xC1: %d\r\n", VL53L0X_READ_1Byte(0xc1));
  printf("0xC2: %d\r\n", VL53L0X_READ_1Byte(0xc2));
  printf("0x51: %d\r\n", VL53L0X_READ_2Byte(0x51));
  printf("0x61: %d\r\n", VL53L0X_READ_2Byte(0x61));



  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {

      if(cmd==1)   //Calibration
      {
			int_enable = 0;
			vl53l0x_test(0);
			cmd = 0;
      }
      else if(cmd==2)  //Run test mode w/o int pin
	  {
			int_enable = 0;
			vl53l0x_test(1);
			cmd = 0;
	  }
      else if(cmd==3)  //Run test mode w/ int pin
      {
			int_enable = 1;
			vl53l0x_test(2);
			cmd = 0;

      }
      else if(cmd==4)  //Save calibration parameters to internal Flash
	  {
    	    FLASH_WRITE_BYTE(VL53L0X_CALI_PARAM_FLASH_ADDRESS, (uint8_t *)&Vl53l0x_data, sizeof(_vl53l0x_adjust));
    	    FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE);// Wait for last operation to be completed
			cmd = 0;
			printf("\r\nCalibration parameter was saved to internal Flash!\r\n");
	  }
      else if(cmd==5)  //read calibration parameters from internal Flash
	  {
    	    FLASH_READ_BYTE(VL53L0X_CALI_PARAM_FLASH_ADDRESS, (uint8_t *)&Vl53l0x_data, sizeof(_vl53l0x_adjust));
    	    Vl53l0x_adjust.adjustok = 0xAA;//校准成功
    	    AjustOK = 1;
			cmd = 0;
			printf("\r\nCalibration parameter was read from internal Flash!\r\n");
	  }
      else cmd = 0;;
	  PY_Delay_us_t(1000);
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSIDiv = RCC_HSI_DIV1;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV1;
  RCC_OscInitStruct.PLL.PLLN = 8;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
  RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief USART2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART2_UART_Init(void)
{

  /* USER CODE BEGIN USART2_Init 0 */

  /* USER CODE END USART2_Init 0 */

  /* USER CODE BEGIN USART2_Init 1 */

  /* USER CODE END USART2_Init 1 */
  huart2.Instance = USART2;
  huart2.Init.BaudRate = 115200;
  huart2.Init.WordLength = UART_WORDLENGTH_8B;
  huart2.Init.StopBits = UART_STOPBITS_1;
  huart2.Init.Parity = UART_PARITY_NONE;
  huart2.Init.Mode = UART_MODE_TX_RX;
  huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  huart2.Init.ClockPrescaler = UART_PRESCALER_DIV1;
  huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  if (HAL_UART_Init(&huart2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART2_Init 2 */

  /* USER CODE END USART2_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOA_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_4, GPIO_PIN_SET);

  /*Configure GPIO pins : PA0 PA1 */
  GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
  GPIO_InitStruct.Pull = GPIO_PULLUP;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

  /*Configure GPIO pin : PA4 */
  GPIO_InitStruct.Pin = GPIO_PIN_4;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

  /*Configure GPIO pin : PA5 */
  GPIO_InitStruct.Pin = GPIO_PIN_5;
  GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
  GPIO_InitStruct.Pull = GPIO_PULLUP;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

  /* EXTI interrupt init*/
  HAL_NVIC_SetPriority(EXTI4_15_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(EXTI4_15_IRQn);

}

/* USER CODE BEGIN 4 */
void HAL_GPIO_EXTI_Falling_Callback(uint16_t GPIO_Pin)
{
	if(int_enable == 1)
	{
		  if(GPIO_Pin==GPIO_PIN_5)
		  {
				  alarm_flag = 1;
		  }

	}
}

void HAL_UART_RxCpltCallback(UART_HandleTypeDef *UartHandle)
{

	if(UartHandle==&huart2)
	{
		cmd = Uart2_RxBuff[0];
		HAL_UART_Receive_IT(&huart2, Uart2_RxBuff, 1);
		if(cmd==0xff)
		{
	  	    __set_PRIMASK(1);
	         NVIC_SystemReset();
		}
	}

}



/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

测试输出

校准过程打印输出:



校准完进行距离测试输出:

工程代码下载

STM32G031F8P6配置读取VL53L0X完整工程下载

调整UART和GPIO相关代码,则可以移植到其它STM32芯片,注意芯片FLASH至少要64K Bytes。

--End--

相关推荐
一枝小雨2 小时前
【OTA专题】15 实现App后台无感下载固件
stm32·单片机·嵌入式·ota·bootloader
TEC_INO3 小时前
STM32_10:SPI
stm32·单片机·嵌入式硬件
polarislove02143 小时前
10.3[ADC]采样时间和转换时间-嵌入式铁头山羊STM32笔记
笔记·stm32·嵌入式硬件
创思通信3 小时前
STM32L151RCT6 BC20 采集温湿度DHT11 采集GPS定位 和ADC发送到最新版本ONENET物联网开放平台
stm32·嵌入式硬件·物联网
__万波__3 小时前
STM32建立完全空白的工程
stm32·单片机·嵌入式硬件
兆龙电子单片机设计4 小时前
【STM32项目开源】STM32单片机充电桩安全监测系统
stm32·单片机·物联网·开源·毕业设计
@good_good_study4 小时前
STM32 C语言函数
stm32
Zeku14 小时前
20260110 - Linux 驱动开发学习笔记:上下文、中断与休眠
stm32·freertos·linux驱动开发·linux应用开发
linweidong19 小时前
嵌入式电机:如何在低速和高负载状态下保持FOC(Field-Oriented Control)算法的电流控制稳定?
stm32·单片机·算法