STM32校准读取激光测距传感器VL53L0X距离数据
VL53L0X是ST公司出品的一款激光测距传感器,LV53L0X采用940nm垂直腔面发射激光器(Vertical-Cavity Surface-Emitting Laser,简称VCSEL)发射出激光,激光碰到障碍物后反射回来被VL53L0X接收到,测量激光在空气中的传播时间,进而得到距离。
VL53L0X的测距范围达到2000mm,比较准确范围30mm~1500mm。可以和VL6180X互补实现近远距离覆盖的测试。市面上有一些不同外观的模块:

这里介绍通过STM32芯片进行连接和测距数据读取的实现。
电路连接
既然是ST出的芯片,自然支持3.3V供电,和STM32可以直接进行连接。STM32采用Open-drain方式和VL53L0X的连接如下所示:

除了用于I2C通讯的SCL, SDA外,主要有XSHUT和GPIO1两个管脚,XSHUT用于关电芯片,GPIO1目前是作为中断输出给STM32, 作为距离测试结果可读取的指示,另外,如果不用GPIO1,则可以直接通过I2C总线读取内部寄存器信息,获得一致的指示信息。
操作模式
VL53L0X有特定的操作模式,首先要进行校准,校准后再进行测试:

如果应用环境是相同的,则可以把校准值保存起来,下次上电或复位后,读取校准值进行应用,则不用每次都进行校准。
针对VL53L0X,ST公司提供了用于STM32开发的VL53L0X库,通过重载部分库函数尤其是STM32的管脚连接关系,就可以实现对VL53L0X的访问。
STM32CUBEIDE工程配置
这里以STM32G031F8P6(64K Flash)和STM32CUBEIDE开发环境为例,实现VL53L0X的访问控制。
首先建立基本工程并配置时钟系统:

GPIO模拟I2C和硬件UART采用内部时钟也足够:

然后配置UART2作为打印输出端口:


这里选择PA0作为SCL, PA1作为SDA, PA4输出XSHUT, PA5作为中断输入。对GPIO管脚进行配置:

保存并产生基本代码:

STM32工程代码
首先将VL53L0X的库文件,放到工程目录里:

I2C模拟时序用到的微秒延时函数,参考: STM32 HAL us delay(微秒延时)的指令延时实现方式及优化
STM32串口打印的实现,参考: STM32 UART串口printf函数应用及浮点打印代码空间节省 (HAL)
因为VL53L0X的库文件占用了一些编译后FLASH空间,采用减少代码编译size的方式,参考: STM32 region `FLASH' overflowed by xxx bytes 问题解决
VL53L0X的校准参数,会存放于内部Flash的末页,实现原理参考: STM32 内部FLASH用作用户数据区Byte操作函数设计 (HAL)
然后引入管脚定义,并修改相应的库文件,并设计测试逻辑。这里的功能由串口收到单字节指令进行操作:
0x01: 实施校准,实施校准前将VL53L0X模块对准参考测试平面10cm
0x02: 运行非中断接收模式的距离测试输出
0x03: 运行中断接收模式的距离测试输出
0x04: 保存校准参数进内部Flash末页
0x05: 从内部Flash末页读取校准参数
0x05: 软件复位STM32
main.c文件的代码如下:
csharp
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2022 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
* Written by Pegasus Yu in 2022.08
* Note: re-power_up VL53L0X after downloading version. Or the calibration test will fail.
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "usart.h"
#include "vl53l0x.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
//us delay functions
__IO float usDelayBase;
void PY_usDelayTest(void)
{
__IO uint32_t firstms, secondms;
__IO uint32_t counter = 0;
firstms = HAL_GetTick()+1;
secondms = firstms+1;
while(uwTick!=firstms) ;
while(uwTick!=secondms) counter++;
usDelayBase = ((float)counter)/1000;
}
void PY_Delay_us_t(uint32_t Delay)
{
__IO uint32_t delayReg;
__IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);
delayReg = 0;
while(delayReg!=usNum) delayReg++;
}
void PY_usDelayOptimize(void)
{
__IO uint32_t firstms, secondms;
__IO float coe = 1.0;
firstms = HAL_GetTick();
PY_Delay_us_t(1000000) ;
secondms = HAL_GetTick();
coe = ((float)1000)/(secondms-firstms);
usDelayBase = coe*usDelayBase;
}
void PY_Delay_us(uint32_t Delay)
{
__IO uint32_t delayReg;
__IO uint32_t msNum = Delay/1000;
__IO uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase);
if(msNum>0) HAL_Delay(msNum);
delayReg = 0;
while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define us_num 10
#define SCL_OUT_H HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_SET)
#define SCL_OUT_L HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_RESET)
#define SDA_OUT_H HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_SET)
#define SDA_OUT_L HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_RESET)
#define SDA_IN HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_1)
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
void I2C_Init(void)
{
SCL_OUT_H;
SDA_OUT_H;
PY_Delay_us_t(1000000) ; //1s delay
}
void I2C_Start(void)
{
PY_Delay_us_t(us_num) ;
SDA_OUT_H;
SCL_OUT_H;
PY_Delay_us_t(us_num/2) ;
SDA_OUT_L;
PY_Delay_us_t(us_num/2) ;
SCL_OUT_L;
}
void I2C_Stop(void)
{
SCL_OUT_L;
PY_Delay_us_t(us_num) ;
SDA_OUT_L;
PY_Delay_us_t(us_num) ;
SCL_OUT_H;
PY_Delay_us_t(us_num) ;
SDA_OUT_H;
PY_Delay_us_t(us_num) ;
}
void I2C_Write_Ack(void)
{
PY_Delay_us_t(us_num/2) ;
SDA_OUT_L;
PY_Delay_us_t(us_num/2) ;
SCL_OUT_H;
PY_Delay_us_t(us_num) ;
SCL_OUT_L;
SDA_OUT_H;
}
uint8_t I2C_Read_Ack(void)
{
uint8_t status=0;
SCL_OUT_L;
PY_Delay_us_t(us_num/2) ;
SDA_OUT_H;
PY_Delay_us_t(us_num/2) ;
status = SDA_IN;
SCL_OUT_H;
PY_Delay_us_t(us_num) ;
SCL_OUT_L;
SDA_OUT_L;
return status;
}
void I2C_Send_Byte(uint8_t txd){
for(uint8_t i=0;i<8;i++)
{
PY_Delay_us_t(us_num/2) ;
if((txd&0x80)>>7) SDA_OUT_H;
else SDA_OUT_L;
txd<<=1;
PY_Delay_us_t(us_num/2) ;
SCL_OUT_H;
PY_Delay_us_t(us_num) ;
SCL_OUT_L;
}
SDA_OUT_L;
}
uint8_t I2C_Read_Byte(unsigned char rdack)
{
uint8_t rxd=0;
for(uint8_t i=0;i<8;i++ )
{
SCL_OUT_L;
PY_Delay_us_t(us_num/2) ;
SDA_OUT_H;
PY_Delay_us_t(us_num/2) ;
SCL_OUT_H;
rxd<<=1;
if(SDA_IN) rxd++;
PY_Delay_us_t(us_num) ;
}
SCL_OUT_L;
SDA_OUT_H;
if (rdack) I2C_Write_Ack();
return rxd;
}
void VL53L0X_WRITE_1Byte(uint8_t WrAddr, uint8_t data)
{
uint8_t daddr = 0x52; //VL53L0X device address (0x29<<1)
I2C_Start();
I2C_Send_Byte(daddr);
I2C_Read_Ack();
I2C_Send_Byte(WrAddr);
I2C_Read_Ack();
I2C_Send_Byte(data);
I2C_Read_Ack();
I2C_Stop();
}
uint8_t VL53L0X_READ_1Byte(uint8_t RdAddr)
{
uint8_t RegValue = 0;
uint8_t daddr = 0x52; //VL53L0X device address (0x29<<1)
I2C_Start();
I2C_Send_Byte(daddr);
I2C_Read_Ack();
I2C_Send_Byte(RdAddr);
I2C_Read_Ack();
I2C_Start();
I2C_Send_Byte(daddr+1);
I2C_Read_Ack();
RegValue=I2C_Read_Byte(0);
I2C_Stop();
return RegValue;
}
uint16_t VL53L0X_READ_2Byte(uint8_t RdAddr)
{
uint8_t RegValueH = 0, RegValueL = 0;
uint8_t daddr = 0x52; //VL53L0X device address (0x29<<1)
I2C_Start();
I2C_Send_Byte(daddr);
I2C_Read_Ack();
I2C_Send_Byte(RdAddr);
I2C_Read_Ack();
I2C_Start();
I2C_Send_Byte(daddr+1);
I2C_Read_Ack();
RegValueL=I2C_Read_Byte(1);
RegValueH=I2C_Read_Byte(0);
I2C_Stop();
return (((uint16_t)RegValueH)<<8)|RegValueL;
}
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
#define VL53L0X_CALI_PARAM_FLASH_ADDRESS FLASH_BASE+FLASH_SIZE-128 //Internal Flash space saved for storing VL53L0X calibration parameters
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART2_UART_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t int_enable = 0;
uint8_t alarm_flag = 0;
uint8_t Uart2_RxBuff[8];
uint8_t cmd = 0;
extern _vl53l0x_adjust Vl53l0x_adjust;
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_USART2_UART_Init();
/* USER CODE BEGIN 2 */
PY_usDelayTest();
PY_usDelayOptimize();
Uart2_RxBuff[0] = 0x00;
HAL_UART_Receive_IT(&huart2, Uart2_RxBuff, 1);
VL53L0X_Xshut_L;
PY_Delay_us_t(30000);
VL53L0X_Xshut_H;
PY_Delay_us_t(30000);
printf("STM32 Starts!\r\n");
printf("0xC0: %d\r\n", VL53L0X_READ_1Byte(0xc0));
printf("0xC1: %d\r\n", VL53L0X_READ_1Byte(0xc1));
printf("0xC2: %d\r\n", VL53L0X_READ_1Byte(0xc2));
printf("0x51: %d\r\n", VL53L0X_READ_2Byte(0x51));
printf("0x61: %d\r\n", VL53L0X_READ_2Byte(0x61));
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
if(cmd==1) //Calibration
{
int_enable = 0;
vl53l0x_test(0);
cmd = 0;
}
else if(cmd==2) //Run test mode w/o int pin
{
int_enable = 0;
vl53l0x_test(1);
cmd = 0;
}
else if(cmd==3) //Run test mode w/ int pin
{
int_enable = 1;
vl53l0x_test(2);
cmd = 0;
}
else if(cmd==4) //Save calibration parameters to internal Flash
{
FLASH_WRITE_BYTE(VL53L0X_CALI_PARAM_FLASH_ADDRESS, (uint8_t *)&Vl53l0x_data, sizeof(_vl53l0x_adjust));
FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE);// Wait for last operation to be completed
cmd = 0;
printf("\r\nCalibration parameter was saved to internal Flash!\r\n");
}
else if(cmd==5) //read calibration parameters from internal Flash
{
FLASH_READ_BYTE(VL53L0X_CALI_PARAM_FLASH_ADDRESS, (uint8_t *)&Vl53l0x_data, sizeof(_vl53l0x_adjust));
Vl53l0x_adjust.adjustok = 0xAA;//校准成功
AjustOK = 1;
cmd = 0;
printf("\r\nCalibration parameter was read from internal Flash!\r\n");
}
else cmd = 0;;
PY_Delay_us_t(1000);
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSIDiv = RCC_HSI_DIV1;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV1;
RCC_OscInitStruct.PLL.PLLN = 8;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart2.Init.ClockPrescaler = UART_PRESCALER_DIV1;
huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOA_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_4, GPIO_PIN_SET);
/*Configure GPIO pins : PA0 PA1 */
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : PA4 */
GPIO_InitStruct.Pin = GPIO_PIN_4;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : PA5 */
GPIO_InitStruct.Pin = GPIO_PIN_5;
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* EXTI interrupt init*/
HAL_NVIC_SetPriority(EXTI4_15_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI4_15_IRQn);
}
/* USER CODE BEGIN 4 */
void HAL_GPIO_EXTI_Falling_Callback(uint16_t GPIO_Pin)
{
if(int_enable == 1)
{
if(GPIO_Pin==GPIO_PIN_5)
{
alarm_flag = 1;
}
}
}
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *UartHandle)
{
if(UartHandle==&huart2)
{
cmd = Uart2_RxBuff[0];
HAL_UART_Receive_IT(&huart2, Uart2_RxBuff, 1);
if(cmd==0xff)
{
__set_PRIMASK(1);
NVIC_SystemReset();
}
}
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
测试输出
校准过程打印输出:



校准完进行距离测试输出:

工程代码下载
STM32G031F8P6配置读取VL53L0X完整工程下载
调整UART和GPIO相关代码,则可以移植到其它STM32芯片,注意芯片FLASH至少要64K Bytes。

--End--