Ascend LlamaFactory微调书生模型

1.环境安装

复制代码
conda create -y -n llamafactory_lab python=3.10
conda activate llamafactory_lab
git clone https://gh.llkk.cc/https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
git checkout v0.9.3
pip install -e ".[torch-npu,metrics]" -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install torch==2.6.0 torch-npu==2.6.0 torchvision

2.安装校验

复制代码
使用以下指令对 LLaMA-Factory × 昇腾的安装进行校验:
llamafactory-cli env

3.微调前的原模型效果呈现

安装依赖

复制代码
pip install transformers==4.47.1
# 环境变量设置单卡GPU
export ASCEND_RT_VISIBLE_DEVICES=0
# 启动推理
llamafactory-cli chat --model_name_or_path /share/new_models/internlm3/internlm3-8b-instruct --trust_remote_code True

输出结果:

4.微调书生模型

安装依赖

复制代码
pip install transformers==4.47.1
pip install huggingface_hub==0.34.0
# 创建工作目录
mkdir /root/llamafactory_workdir

安装数据集

复制代码
export HF_ENDPOINT=https://hf-mirror.com
huggingface-cli download --repo-type dataset --resume-download llamafactory/alpaca_en --local-dir /root/dataset/alpaca_en
huggingface-cli download --repo-type dataset --resume-download llamafactory/alpaca_zh --local-dir /root/dataset/alpaca_zh

创建dataset_info.json文件

复制代码
mkdir /root/llamafactory_workdir/data
cd /root/llamafactory_workdir/data
touch dataset_info.json

dataset_info.json文件

复制代码
{
    "alpaca_en":{
        "file_name": "/root/dataset/alpaca_en/alpaca_data_en_52k.json",
        "columns": {
            "prompt": "instruction",
            "query": "input",
            "response": "output"
        }
    },
    "alpaca_zh":{
        "file_name": "/root/dataset/alpaca_zh/alpaca_data_zh_51k.json",
        "columns": {
            "prompt": "instruction",
            "query": "input",
            "response": "output"
        }
    }
}

Yaml配置文件

复制代码
cd /root/llamafactory_workdir
touch internlm3_lora_sft_ds.yaml

internlm3_lora_sft_ds.yaml文件内容

复制代码
### model
model_name_or_path: /share/new_models/internlm3/internlm3-8b-instruct
trust_remote_code: True

### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj

### dataset
dataset: alpaca_en,alpaca_zh
template: intern2
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16

### output
output_dir: saves/internlm3-8b-instruct/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true

### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 2
learning_rate: 0.0001
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true

### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

开启微调dong

复制代码
torchrun --nproc_per_node 1 \
    --nnodes 1 \
    --node_rank 0 \
    --master_addr 127.0.0.1 \
    --master_port 7007 \
    /root/LLaMA-Factory/src/train.py internlm3_lora_sft_ds.yaml

动态合并LoRA的微调

复制代码
llamafactory-cli chat --model_name_or_path /share/new_models/internlm3/internlm3-8b-instruct \
            --adapter_name_or_path saves/internlm3-8b-instruct/lora/sft \
            --template intern \
            --finetuning_type lora \
            --trust_remote_code True

从推理结果看和源模型的输出有所区别了,那就说明微调完成了

微调完成之后可以将微调的权重和原始的模型合并导出

复制代码
ASCEND_RT_VISIBLE_DEVICES=0 
llamafactory-cli export \
            --model_name_or_path /share/new_models/internlm3/internlm3-8b-instruct \
            --adapter_name_or_path saves/internlm3-8b-instruct/lora/sft  \
            --template intern2 \
            --finetuning_type lora \
            --export_dir saves/internlm3-8b-instruct/lora/megred-model-path \
            --export_device auto \
            --export_legacy_format False \
            --trust_remote_code True
相关推荐
全栈技术负责人2 小时前
AI驱动开发 (AI-DLC) 实战经验分享:重构人机协作的上下文工程
人工智能·重构
Wu_Dylan2 小时前
智能体系列(二):规划(Planning):从 CoT、ToT 到动态采样与搜索
人工智能·算法
一招定胜负2 小时前
OpenCV轮廓检测完全指南:从原理到实战
人工智能·opencv·计算机视觉
知乎的哥廷根数学学派2 小时前
基于多尺度注意力机制融合连续小波变换与原型网络的滚动轴承小样本故障诊断方法(Pytorch)
网络·人工智能·pytorch·python·深度学习·算法·机器学习
xiatianxy2 小时前
云酷科技用智能化方案破解行业难题
人工智能·科技·安全·智能安全带
星云数灵2 小时前
大模型高级工程师考试练习题8
人工智能·机器学习·大模型·大模型考试题库·阿里云aca·阿里云acp大模型考试题库·大模型高级工程师acp
A先生的AI之旅2 小时前
2025顶会TimeDRT快速解读
人工智能·pytorch·python·深度学习·机器学习
2301_800256112 小时前
【人工智能引论期末复习】第3章 搜索求解2 - 对抗搜索
人工智能·算法·深度优先
温柔只给梦中人2 小时前
深度学习:正则化
人工智能·深度学习