漫画说:为什么你的“增量计算”越跑越慢?——90%的实时数仓团队都踩过的坑,藏在这几格漫画里

为什么每次只改一行数据,却要重算上亿条历史记录?

你在构建实时看板、用户画像或风控特征时,是否也遇到过这样的困境?

每天新增的订单可能只有几万条,但背后的用户、商品、支付表动辄上亿行。为了刷新一个聚合指标,系统不得不全量扫描、重新 Join、再聚合------哪怕 99% 的数据根本没有变化。

这不仅拖慢了刷新频率,还让计算成本居高不下。

更糟的是,为了"扛住"全量任务,团队往往被迫拆出多层中间表,链路越拉越长,维护越来越难。

增量刷新本应是解药,但并非所有方案都是真正"增量"。

一些系统采用无状态模型:每次只读变更数据,却不保存任何中间结果。听起来轻量,实则代价高昂------复杂查询下,它仍需反复回溯历史数据,甚至比全量更慢。

阿里云 Hologres 选择了另一条路径:有状态增量计算。

在首次全量构建时,它同步生成并持久化关键中间状态------比如聚合值、Join 中间产物。

后续刷新,只需将新数据与状态合并,无需触碰原始历史表。

这意味着:

  • 刷新延迟从分钟级降至秒级;

  • 计算资源消耗大幅下降;

  • 即使面对五表 Join 或 COUNT DISTINCT,也能保持高效。

状态确实需要额外存储,但这部分开销是可控的。

在分区表场景中,仅活跃分区保留状态;非活跃分区自动转为全量,避免状态膨胀。

对于非分区表,也可通过 TTL 策略清理过期状态。

真正的效率,不在于少算一点,而在于只算该算的。

如果你正在设计实时数仓、特征管道或统一指标体系,不妨评估:你的"增量"是否真的避开了历史数据的重复计算?

Hologres Dynamic Table 提供了一种经过验证的答案------用有限的存储换确定性的性能,让实时更新回归本质。

相关推荐
Gavin在路上2 小时前
SpringAIAlibaba之上下文工程与GraphRunnerContext 深度解析(8)
人工智能
撬动未来的支点2 小时前
【AI】光速理解YOLO框架
人工智能·yolo·计算机视觉
电商API_180079052472 小时前
批量获取电商商品数据的主流技术方法全解析
大数据·数据库·人工智能·数据分析·网络爬虫
学境思源AcademicIdeas2 小时前
我在手机上部署了一个AI大模型,用它写完了论文初稿【附提示词】
人工智能·智能手机
week_泽2 小时前
第1课:AI Agent是什么 - 学习笔记_1
人工智能·笔记·学习
kebijuelun2 小时前
REAP the Experts:去掉 MoE 一半专家还能保持性能不变
人工智能·gpt·深度学习·语言模型·transformer
医工交叉实验工坊2 小时前
从零详解WGCNA分析
人工智能·机器学习
百万彩票中奖候选人2 小时前
在trae、qoder、Claude Code、Cursor等AI IDE中使用ui-ux-pro-max-skill
人工智能·ui·ux
Bigemap3 小时前
如何保存WAsp软件需要的 map格式(.map)的文件
人工智能·无人机·政务·bigemappro添加地图