迁移学习的第二类方法:特征选择

**Hi,大家好,我是半亩花海。**在上节说明了迁移学习的第一类方法:数据分布自适应之后,本文主要将介绍迁移学习的第二类方法------特征选择。该方法基于源域和目标域存在共享特征的假设,通过机器学习选择这些公共特征来构建模型。重点讲解了经典SCL方法及其核心概念Pivot feature(跨领域高频词),并列举了后续扩展研究如联合特征选择与子空间学习等方法。特征选择法通常与分布自适应方法结合,采用稀疏表示实现特征选择,为迁移学习提供了重要技术路径。

一、基本假设

特征选择法的基本假设是:源域和目标域中均含有一部分公共的特征,在这部分公共的特征上,源领域和目标领域的数据分布是一致的。因此,此类方法的目标就是,通过机器学习方法,选择出这部分共享的特征,即可依据这些特征构建模型。

下图形象地表示了特征选择法的主要思路。
特征选择法示意图

二、核心方法

这个领域比较经典的一个方法是发表在 2006 年的 ECML-PKDD 会议上,作者提出了一个叫做 SCL 的方法 (Structural Correspondence Learning) [Blitzer et al., 2006]。这个方法的目标就是我们说的,找到两个领域公共的那些特征。作者将这些公共的特征叫做 Pivot feature。找出来这些Pivot feature,就完成了迁移学习的任务。
特征选择法中的 Pivot feature 示意图

上图形象地展示了 Pivot feature 的含义。Pivot feature指的是在文本分类中,在不同领域中出现频次较高的那些词。

三、扩展

SCL 方法是特征选择方面的经典研究工作。基于 SCL,也出现了一些扩展工作。

  • Joint feature selection and subspace learning [Gu et al., 2011]:特征选择 + 子空间学习
  • TJM (Transfer Joint Matching) [Long et al., 2014b]: 在优化目标中同时进行边缘分布自适应和源域样本选择
  • FSSL (Feature Selection and Structure Preservation) [Li et al., 2016]: 特征选择 + 信息不变性

四、小结

  1. 特征选择法从源域和目标域中选择提取共享的特征,建立统一模型;
  2. 通常与分布自适应方法进行结合;
  3. 通常采用稀疏表示 实现特征选择。
相关推荐
那个村的李富贵37 分钟前
光影魔术师:CANN加速实时图像风格迁移,让每张照片秒变大师画作
人工智能·aigc·cann
腾讯云开发者2 小时前
“痛点”到“通点”!一份让 AI 真正落地产生真金白银的实战指南
人工智能
CareyWYR2 小时前
每周AI论文速递(260202-260206)
人工智能
hopsky3 小时前
大模型生成PPT的技术原理
人工智能
禁默4 小时前
打通 AI 与信号处理的“任督二脉”:Ascend SIP Boost 加速库深度实战
人工智能·信号处理·cann
心疼你的一切4 小时前
昇腾CANN实战落地:从智慧城市到AIGC,解锁五大行业AI应用的算力密码
数据仓库·人工智能·深度学习·aigc·智慧城市·cann
AI绘画哇哒哒4 小时前
【干货收藏】深度解析AI Agent框架:设计原理+主流选型+项目实操,一站式学习指南
人工智能·学习·ai·程序员·大模型·产品经理·转行
数据分析能量站4 小时前
Clawdbot(现名Moltbot)-现状分析
人工智能
那个村的李富贵4 小时前
CANN加速下的AIGC“即时翻译”:AI语音克隆与实时变声实战
人工智能·算法·aigc·cann
二十雨辰4 小时前
[python]-AI大模型
开发语言·人工智能·python