如何在环境里同时配置tensorflow和pytorch共存

先配置TensorFlow再配置pytorch

1.首先在环境里配置好TensorFlow:

配置方法参考我之前的帖子:

https://blog.csdn.net/DJJ5210/article/details/133109588

(【最新发现的方法】安装tensorflow2.4.0方法(亲测有效))

2.在装好TensorFlow的环境里配置pytorch:

2.1.1.复制装好TensorFlow的环境,重新命名新环境。

复制代码
#conda create --name 新环境名 --clone 旧环境名

conda create --name PLMGLPPeptide --clone tensorflow2.4.0

2.1.2将编译器修改成新环境PLMGLPPeptide

2.2.1.查看我的TensorFlow配置的cuda版本和cudnn版本

conda list cudatoolkit查看cuda版本

复制代码
conda list cudatoolkit

2.2.2.安装pytroch

pytorch安装方法见我之前的帖子

https://blog.csdn.net/DJJ5210/article/details/132200933

(装pytorch,其实超简单(亲测))

我conda list cudatoolkit返回结果显示11.0.221,但我的nividia-smi返回结果是cuda 12.8

以防万一乱了TensorFlow对应的cuda 版本,因为一键安装pytorch的时候,会更改cuda版本

所以我直接找对应cuda 11.0的安装pytorch版本

conda安装方法不行,咋试都通道包兼容啥的问题,最后采取了豆包给的意见安装,保留cuda版本的前期下pip安装(终于成功了)

复制代码
 pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html

测试指令:

复制代码
 python -c "import torch; print('PyTorch版本:',torch.__version__); print('绑定CUDA:',torch.ion.cuda); print('GPU可用:',torch.cuda.is_available())"

输出Ture!pytorch安装成功了

再回头测试下TensorFlow

测试指令:

复制代码
python

import tensorflow as tf

tf.__version__  #显示2.4.0

tf.test.is_gpu_available() 

返回True!,说明没有干扰tensorflow的配置

至此,TensorFlow和pytorch双框架环境配置成功!!!

DJJ:题外话:关于cuda版本的问题解释(与上面安装没直接关系)

✅ 你的情况【完全正常,无需解决】!cuda 11.0.221 (conda) + 12.8 (nvidia-smi) 是标准合理状态

你遇到的这个问题是所有用 conda+NVIDIA 显卡的人都会碰到的经典情况,99% 的深度学习新手都会疑惑这个版本不一致,结论先说清楚:

版本不一样是正常现象,不用修改、不用重装、不用匹配,对你的程序运行(pytorch/tensorflow)完全没有任何影响!放心用就好!


一、先彻底搞懂:这两个 CUDA 版本,到底是什么?【核心必看,彻底解惑】

✅ 版本 1:conda list cudatoolkit → 显示 11.0.221

这个是 【conda 虚拟环境专属的 CUDA 工具包】 ,专业名称:CUDA Toolkit

  • 这个版本是 你的 Python 程序(Pytorch/Tensorflow)真正在调用、真正依赖的 CUDA 版本
  • 这个包是你用conda install安装的,只在当前激活的 conda 环境生效,其他环境互不干扰;
  • 你的环境里装的是11.0,意味着你的 Pytorch/Tensorflow 运行时,只会用到 CUDA 11.0 的相关功能;
  • 这个版本是软件层面的依赖包,和显卡驱动无关。

✅ 版本 2:nvidia-smi → 显示 CUDA Version:12.8

这个是 【你的显卡驱动支持的最高 CUDA 版本】 ,专业名称:CUDA Driver API

  • 这个版本是你的 NVIDIA 显卡驱动(显卡驱动程序)本身的一个能力标识 :表示你的显卡驱动最大能兼容到 CUDA 12.8
  • 这个版本是向下兼容 的!!!【重中之重】:高版本驱动 可以完美兼容所有比它低的 CUDA Toolkit 版本
  • 你的驱动支持 12.8 → 意味着它可以完美支持 12.7、12.0、11.8、11.0、10.2 等等所有≤12.8 的 CUDA Toolkit 版本
  • 这个版本是硬件驱动层面 的,全局生效,和 conda 环境无关,你用nvcc -V查到的版本也会和这个一致(如果装了系统 CUDA)。
相关推荐
星期五不见面2 小时前
机器人学习!(二)ROS-基于Gazebo项目-YOLO(3)2026/01/13
人工智能·学习·机器人
bst@微胖子2 小时前
HuggingFace项目实战之使用Trainer执行训练
人工智能·机器学习
d0ublεU0x002 小时前
注意力机制与transformer
人工智能·深度学习·transformer
凤希AI伴侣2 小时前
凤希AI提出:FXPA2P - 当P2P技术遇上AI,重新定义数据与服务的边界
人工智能·凤希ai伴侣
腾迹2 小时前
2026年企业微信SCRM系统服务推荐:微盛·企微管家的AI私域增长方案
大数据·人工智能
寰宇视讯2 小时前
脑科技走进日常 消费级应用开启新蓝海,安全与普惠成关键
人工智能·科技·安全
云卓SKYDROID2 小时前
无人机电机模块选型与技术要点
人工智能·无人机·遥控器·高科技·云卓科技
小酒星小杜2 小时前
在AI时代,技术人应该每天都要花两小时来构建一个自身的构建系统 - 总结篇
前端·vue.js·人工智能
云卓SKYDROID2 小时前
无人机螺旋桨材料与技术解析
人工智能·无人机·高科技·云卓科技·技术解析、