搭建全局python 环境
shell
# 安装 venv 工具
sudo apt install python3.12-venv
# 创建环境
python3 -m venv global_leo_python3_env
# 激活环境
source /home/leo/global_leo_python3_env/bin/activate # Linux/Mac
myenv\Scripts\activate.bat # Windows
shell
/home/leo/global_leo_python3_env
❯ tree -L 2
.
├── bin
│ ├── activate
│ ├── activate.csh
│ ├── activate.fish
│ ├── Activate.ps1
│ ├── pip
│ ├── pip3
│ ├── pip3.12
│ ├── python -> python3
│ ├── python3 -> /usr/bin/python3
│ └── python3.12 -> python3
├── include
│ └── python3.12
├── lib
│ └── python3.12
├── lib64 -> lib
└── pyvenv.cfg
7 directories, 11 files
搭建 MCP服务
pip安装:若MCP Server提供Python包,可通过pip install mcp-server安装。
shell
pip install mcp-server
安装完成后,需配置MCP Server,包括环境变量和启动命令。示例如下:
shell
# 设置环境变量
export MCP_SERVER_PORT=8080
export MCP_SERVER_DB_URI=mongodb://localhost:27017/mcp_db
# 启动MCP Server
mcp-server start
vscode 安装Continue

添加模型
增加本地 ollama 模型



/home/leo/.continue/config.yaml
shell
name: Local Config
version: 1.0.0
schema: v1
models:
- name: Autodetect
provider: ollama
model: AUTODETECT

这里可以选择 我们通过 ollama 安装的 模型
配置 mcp 服务
// /home/leo/.continue/config.yaml
yaml
mcpServers:
- uses: anthropic/memory-mcp

安装uv
shell
curl -LsSf https://astral.sh/uv/install.sh | sh
downloading uv 0.9.26 x86_64-unknown-linux-gnu
no checksums to verify
installing to /home/leo/.local/bin
uv
uvx
everything's installed!
To add $HOME/.local/bin to your PATH, either restart your shell or run:
# 配置到 .bashrc 中
source $HOME/.local/bin/env (sh, bash, zsh)
source $HOME/.local/bin/env.fish (fish)