从扩散到"直滑":DDIM如何将扩散模型提速50倍并开启AIGC新时代
同一张神经网络,全新的采样哲学
2019-2020年,扩散模型以惊艳的图像生成质量震撼了学术界,但其致命的缺陷同样明显:生成一张图片需要成百上千步 的迭代,速度比GAN慢数个数量级。正当人们担心这一技术路线是否实用时,一篇名为《Denoising Diffusion Implicit Models》的论文横空出世,提出了DDIM------它不仅将采样速度提升10-50倍,更从根本上重塑了我们对扩散模型的理解。
核心贡献:提出非马尔可夫扩散过程,实现确定性快速采样,在不重新训练的情况下将扩散模型采样速度提升10-50倍。
历史地位:扩散模型实用化的里程碑,连接了传统扩散模型与现代高效生成式AI的桥梁。















今天回头再看这篇2020年的论文,其影响力远超当时任何人的预期。DDIM的核心思想------训练与采样的解耦------已成为现代扩散模型的标准范式。
无论是Stable Diffusion在潜空间的高效生成,还是各类加速采样器在少步数下保持质量的能力,其思想源头都可以追溯到DDIM的这篇开创性工作。
它教会我们一个深刻的道理:有时,突破不在于训练更大的模型,而在于重新思考问题的框架。当所有人都沿着马尔可夫的路径思考时,DDIM团队选择了"非马尔可夫"这条少有人走的路------而正是这条路,最终引领了生成式AI的爆发。