The Matrix Transpose (矩阵转置)

The Matrix Transpose {矩阵转置}

  • [1. Definition: Matrix Transpose](#1. Definition: Matrix Transpose)
  • [2. Properties of the Matrix Transpose](#2. Properties of the Matrix Transpose)
  • References

1. Definition: Matrix Transpose

Let A \mathbf{A} A be an m × n m\times n m×n matrix. The tranpsose of A \mathbf{A} A, denoted A T \mathbf {A}^{\mathrm {T}} AT, is the n × m n\times m n×m matrix whose columns are the respective rows of A \mathbf{A} A.

The transpose of a matrix is an operator that flips a matrix over its diagonal; that is, transposition switches the row and column indices of the matrix A \mathbf{A} A to produce another matrix, often denoted A T \mathbf {A}^{\mathrm {T}} AT.

复制代码
transposition [ˌtrænspə'zɪʃ(ə)n]
n. 换位;移项;词序改变;变调 (曲)

The transpose A T \mathbf {A}^{\mathrm {T}} AT of a matrix A \mathbf{A} A can be obtained by reflecting the elements along its main diagonal.

The i i ith row, j j jth column element of A T \mathbf {A}^{\mathrm {T}} AT is the j j jth row, i i ith column element of A \mathbf{A} A:

A T \] i j = \[ A \] j i . \\left\[ \\mathbf{A}\^\\mathrm {T} \\right\]_{ij} = \\left\[ \\mathbf{A} \\right\]_{ji}. \[AT\]ij=\[A\]ji. 注意: A T \\mathbf {A}\^{\\mathrm {T}} AT (转置矩阵) 与 A − 1 \\mathbf {A} \^{-1} A−1 (逆矩阵) 不同。 * Example A = \[ 1 2 3 4 5 6 \] \\mathbf {A} = \\left\[ \\begin{array}{ccc}{1}\&{2}\&{3}\\\\{4}\&{5}\&{6}\\end{array} \\right\] A=\[142536

Note that A \mathbf{A} A is a 2 × 3 2 \times 3 2×3 matrix, so A T \mathbf {A}^{\mathrm {T}} AT will be a 3 × 2 3 \times 2 3×2 matrix. By the definition, the first column of A T \mathbf {A}^{\mathrm {T}} AT is the first row of A \mathbf{A} A; the second column of A T \mathbf {A}^{\mathrm {T}} AT is the second row of A \mathbf{A} A. Therefore,

A T = [ 1 4 2 5 3 6 ] . \mathbf {A}^{\mathrm {T}} = \left[\begin{array}{cc}{1}&{4}\\{2}&{5}\\{3}&{6}\end{array}\right]. AT= 123456 .

2. Properties of the Matrix Transpose

Let A \mathbf {A} A and B \mathbf {B} B be matrices and k k k be a scalar.

  1. ( A + B ) T = A T + B T (\mathbf {A}+\mathbf {B})^{\mathrm {T}}=\mathbf {A}^{\mathrm {T}}+\mathbf {B}^{\mathrm {T}} (A+B)T=AT+BT and ( A − B ) T = A T − B T (\mathbf {A}-\mathbf {B})^{\mathrm {T}}=\mathbf {A}^{\mathrm {T}}-\mathbf {B}^{\mathrm {T}} (A−B)T=AT−BT
  2. ( k A ) T = k A T (k\mathbf {A})^{\mathrm {T}}=k\mathbf {A}^{\mathrm {T}} (kA)T=kAT

The transpose of a scalar is the same scalar.

标量的转置是同样的标量。

  1. ( A B ) T = B T A T (\mathbf {AB})^{\mathrm {T}}=\mathbf {B}^{\mathrm {T}}\mathbf {A}^{\mathrm {T}} (AB)T=BTAT

By induction, this result extends to the general case of multiple matrices, so ( A 1 A 2 . . . A k − 1 A k ) T = A k T A k − 1 T ... A 2 T A 1 T (\mathbf {A}{1}\mathbf {A}{2}...\mathbf {A}{k-1}\mathbf {A}{k})^{\mathrm {T}} = \mathbf {A}{k}^{\mathrm {T}}\mathbf {A}{k-1}^{\mathrm {T}}...\mathbf {A}{2}^{\mathrm {T}}\mathbf {A}{1}^{\mathrm {T}} (A1A2...Ak−1Ak)T=AkTAk−1T...A2TA1T.

  1. ( A − 1 ) T = ( A T ) − 1 (\mathbf {A}^{-1})^{\mathrm {T}}=(\mathbf {A}^{\mathrm {T}})^{-1} (A−1)T=(AT)−1

  2. ( A T ) T = A (\mathbf {A}^{\mathrm {T}})^{\mathrm {T}}=\mathbf {A} (AT)T=A

  3. A square matrix whose transpose is equal to itself is called a symmetric matrix; that is, A \mathbf {A} A is symmetric if A T = A \mathbf {A} ^{\text{T}}=\mathbf {A} AT=A.

A matrix A \mathbf {A} A is symmetric if A T = A \mathbf {A} ^{\text{T}}=\mathbf {A} AT=A.

一个矩阵的转置等于自身的方块矩阵叫做对称矩阵。

复制代码
symmetric [sɪ'metrɪk]
adj. 对称的
  1. A square matrix whose transpose is equal to its negative is called a skew-symmetric matrix; that is, A \mathbf {A} A is skew-symmetric if A T = − A \mathbf {A} ^{\text{T}}=-\mathbf {A} AT=−A.

A matrix A \mathbf {A} A is skew symmetric if A T = − A \mathbf {A} ^{\text{T}}=-\mathbf {A} AT=−A.

一个矩阵的转置等于它的负矩阵的方块矩阵叫做斜对称矩阵。

复制代码
skew [skjuː]
n. 斜交;扭曲;斜砌石;歪轮
adj. 歪的;弯曲的;误用的;曲解的
v. 歪曲;曲解;使不公允;影响 ... 的准确性
  1. Given any matrix A \mathbf {A} A, the matrices A A T \mathbf {A}\mathbf {A}^{T} AAT and A T A \mathbf {A}^{T}\mathbf {A} ATA are symmetric.

If A \mathbf {A} A is an m × n m\times n m×n matrix and A T \mathbf {A}^{\mathrm {T}} AT is its transpose, then the result of matrix multiplication with these two matrices gives two square matrices: A A T \mathbf {A}\mathbf {A}^{T} AAT is m × m m\times m m×m and A T A \mathbf {A}^{T}\mathbf {A} ATA is n × n n\times n n×n. Furthermore, these products are symmetric matrices.

Indeed, the matrix product A A T \mathbf {A}\mathbf {A}^{T} AAT has entries that are the inner product of a row of A \mathbf {A} A with a column of A T \mathbf {A}^{\mathrm {T}} AT. But the columns of A T \mathbf {A}^{\mathrm {T}} AT are the rows of A \mathbf {A} A, so the entry corresponds to the inner product of two rows of A \mathbf {A} A. If p i j p_{ij} pij is the entry of the product ( A A T \mathbf {A}\mathbf {A}^{T} AAT), it is obtained from i i i row of A \mathbf {A} A with j j j column of A T \mathbf {A}^{\mathrm {T}} AT. The entry p j i p_{ji} pji is obtained from j j j row of A \mathbf {A} A with i i i column of A T \mathbf {A}^{\mathrm {T}} AT, thus p i j = p j i p_{ij} = p_{ji} pij=pji, and the product matrix is symmetric. Similarly, the product A T A \mathbf {A}^{T}\mathbf {A} ATA is a symmetric matrix.

A quick proof of the symmetry of A A T \mathbf {A}\mathbf {A}^{T} AAT results from the fact that it is its own transpose:

( A A T ) T = ( A T ) T A T = A A T \left(\mathbf{A} \mathbf{A}^\text{T}\right)^\text{T} = \left(\mathbf{A}^\text{T}\right)^\text{T} \mathbf{A}^\text{T}= \mathbf{A} \mathbf{A}^\text{T} (AAT)T=(AT)TAT=AAT.

References

1\] Yongqiang Cheng (程永强), \[2\] Linear Algebra, \[3\] Transpose,

相关推荐
赋能大师兄4 个月前
矩阵转置与压缩
矩阵转置·行程编码·矩阵压缩
农场主er4 个月前
Metal - 5.深入剖析 3D 变换
3d·opengl·transform·matrix·metal
码农研究僧1 年前
详细分析Pytorch中的transpose基本知识(附Demo)| 对比 permute
pytorch·python·1024程序员节·transpose
是嘟嘟啊1 年前
【Unity】线性代数基础:矩阵、矩阵乘法、转置矩阵、逆矩阵、正交矩阵等
线性代数·unity·矩阵·矩阵乘法·逆矩阵·unity shader·矩阵转置
Kasen's experience2 年前
Latex 超长矩阵如何处理显示问题
矩阵·latex·公式·matrix·换行·超宽
微小冷2 年前
【C#】MathNet矩阵计算
开发语言·线性代数·矩阵·c#·matrix·mathmath·矩阵计算
微小冷2 年前
C#用MathNet生成矩阵,并打印矩阵元素
线性代数·矩阵·c#·mathnet·matrix·matrixbuilder