大型语言模型与软件开发职业

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/

在软件开发领域,最稳健的职业发展路径通常包括两点:

(1)在解决问题时务实且高效;

(2)不要把现有代码当作"黑箱"。

第一点意味着,作为一个稳健的开发者,你应该会熟练地使用现有的技术栈,比如 PostgreSQL 或 MySQL(或其他数据库)、Rails 或 .NET(或其他框架),并且懂得借鉴来自 Stack Overflow 或大型语言模型(LLMs)的代码。

第二点则意味着你要有好奇心,愿意随着时间的推移去深入理解网页服务器、数据库、操作系统和浏览器的工作原理。这样,当你在借鉴他人代码和思路时,才能做出更好的判断与调整。

从更宏观的角度看,借助 LLM 编程,本质上与使用 Rails 或在 Stack Overflow 上查找代码并无根本不同。它更快、更直接,但归根结底仍是人类在"改写现有代码"。

那些只愿意把现有框架、库或应用程序当作黑箱看待的人,本来在求职与留任方面就不具竞争力。而那些真正有技术深度的公司,总是倾向于招聘理解基础原理的开发者,因为他们要么:(1)在足够大的规模上运行,应用程序的实现方式会直接影响性能与稳定性;要么(2)他们本身就在构建 PostgreSQL、MySQL、Rails、.NET、Stack Overflow 或 LLM 等底层技术。

软件行业的发展一直遵循一个方向------持续降低中小企业(SMBs)乃至大型团队雇佣开发者以解决问题或提升效率的需求。LLM 的出现只是这场"自动化进程"的延续。但这并不意味着企业就不再需要开发者。当业务复杂度或客户规模扩大到一定程度时,企业仍然必须招聘开发者来支撑系统的成长。

那些依赖软件基础原理的工作,不会因为 LLM 的普及而不再依赖这些原理。相反,随着越来越多非开发者开始使用 LLM 来构建工具、系统与应用,真正懂得软件底层原理的工程师反而会变得更重要------因为他们将承担维护、优化、扩展这些基础系统的责任。

总而言之,如果你热爱软件开发,不必担心"有趣的开发工作"会消失。

继续学习,继续动手------去编译器、数据库、操作系统这些核心领域探索;去寻找那些因为规模或复杂性而需要扎实基础的公司;或者去挑战那些在底层上构建未来的团队。真正有趣的工程,总是存在于那些让基础原理再次重要的地方。

相关推荐
OpenBayes17 小时前
教程上新|DeepSeek-OCR 2公式/表格解析同步改善,以低视觉token成本实现近4%的性能跃迁
人工智能·深度学习·目标检测·机器学习·大模型·ocr·gpu算力
冰糖猕猴桃18 小时前
【AI】把“大杂烩抽取”拆成多步推理:一个从单提示到多阶段管线的实践案例
大数据·人工智能·ai·提示词·多步推理
PPIO派欧云18 小时前
PPIO上线GLM-OCR:0.9B参数SOTA性能,支持一键部署
人工智能·ai·大模型·ocr·智谱
雨大王51218 小时前
怎么打造一个能自我进化的制造数字基座?
人工智能·汽车·制造
fengfuyao98518 小时前
基于MATLAB的表面织构油润滑轴承故障频率提取(改进VMD算法)
人工智能·算法·matlab
爱吃泡芙的小白白18 小时前
深入解析CNN中的Dropout层:从基础原理到最新变体实战
人工智能·神经网络·cnn·dropout·防止过拟合
Eloudy19 小时前
全文 -- TileLang: A Composable Tiled Programming Model for AISystems
人工智能·量子计算·arch
才盛智能科技19 小时前
K链通×才盛云:自助KTV品牌从0到1孵化超简单
大数据·人工智能·物联网·自助ktv系统·才盛云
广州赛远19 小时前
IRB2600-201.65特殊机器人防护服清洗工具详解与避坑指南
大数据·人工智能
Eloudy19 小时前
直接法 读书笔记 01 第1章 引言
人工智能·机器学习·hpc