RK3588平台基于RKNN-SDK的NPU加速推理与YOLOv5模型部署全流程

本文讲述如何使用RKNN SDK,如何将转换成RKLLM格式部署到RK3576/RK3588上利用NPU进行硬件加速推理。

一、开发环境

1、硬件平台:

  • SoC: Rockchip RK3588S
  • CPU: Quad-core ARM Cortex-A76(up to 2.4GHz) and quad-core Cortex-A55 CPU (up to 1.8GHz)
  • GPU: Mali-G610 MP4, compatible with OpenGLES 1.1, 2.0, and 3.2, OpenCL up to 2.2 and Vulkan1.2
  • VPU: 8K@60fps H.265 and VP9 decoder, 8K@30fps H.264 decoder, 4K@60fps AV1 decoder, 8K@30fps H.264 and H.265 encoder
  • NPU: 6TOPs, supports INT4/INT8/INT16/FP16
  • RAM: 64-bit 8GB LPDDR4X at 2133MHz
  • Flash: 32GB eMMC, at HS400 mode

2、软件平台:

操作系统:debian-bullseye-desktop-arm64
NPU 驱动版本
复制代码
$ sudo cat /sys/kernel/debug/rknpu/version
RKNPU driver: v0.8.2

二、运行RKNN示例程序

1、下载并安装RKNN运行时库

复制代码
cd ~
export GIT_SSL_NO_VERIFY=1
git clone https://github.com/airockchip/rknn-toolkit2.git
cd rknn-toolkit2/rknpu2
sudo cp ./runtime/Linux/librknn_api/aarch64/* /usr/lib
sudo cp ./runtime/Linux/rknn_server/aarch64/usr/bin/* /usr/bin/
sudo cp ./runtime/Linux/librknn_api/include/* /usr/include/

2、检查rknn版本

复制代码
$ strings /usr/bin/rknn_server |grep 'build@'

$ strings /usr/lib/librknnrt.so |grep 'librknnrt version:'

3、安装C++编译环境

复制代码
#安装编译工具
sudo apt-get update
sudo apt-get install -y gcc g++ make cmake
 
#设置链接库
cd ~/rknn-toolkit2/rknpu2/examples/3rdparty/mpp/Linux/aarch64
rm -f librockchip_mpp.so librockchip_mpp.so.1
ln -s librockchip_mpp.so.0 librockchip_mpp.so
ln -s librockchip_mpp.so.0 librockchip_mpp.so.1

#设置编译环境及编译程序
cd ~/rknn-toolkit2/rknpu2/examples/rknn_yolov5_demo
chmod +x ./build-linux.sh
sudo ln -s /usr/bin/gcc /usr/bin/aarch64-gcc
sudo ln -s /usr/bin/g++ /usr/bin/aarch64-g++
export GCC_COMPILER=aarch64
./build-linux.sh -t rk3588 -a aarch64 -b Release
cd install/rknn_yolov5_demo_Linux

4、运行YOLOv5图片示例

测试程序目录:

rknn-toolkit2/rknpu2/examples/rknn_yolov5_demo/install/rknn_yolov5_demo_Linux

rockchip官方测试程序源码不需要修改,直接运行。

复制代码
#运行测试程序
./rknn_yolov5_demo model/RK3588/yolov5s-640-640.rknn model/test.jpg

原测试目录中有bus.jpeg的图片,如要测试其他图片自行上传到对应目录。

5、运行YOLOv5视频示例

测试程序目录:

rknn-toolkit2/rknpu2/examples/rknn_yolov5_demo/install/rknn_yolov5_demo_Linux

测试程序运行参数要求:

Usage: ./rknn_yolov5_video_demo <rknn_model> <video_path> <video_type 264/265>

rockchip官方测试程序对输入的视频文件只有终端的文字输出,如果要视频显示画面输出源码需要修改添加opencv输出显示功能。

测试源文件目录:rknn-toolkit2/rknpu2/examples/rknn_yolov5_demo/src

安装opencv开发环境:

复制代码
sudo apt install libopencv-dev opencv-data pkg-config -y

main_video源文件:

复制代码
// Copyright (c) 2023 by Rockchip Electronics Co., Ltd. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/*-------------------------------------------
                Includes
-------------------------------------------*/
#include <dlfcn.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/time.h>

// +++ 添加显示功能:引入OpenCV头文件 +++
#include <opencv2/opencv.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>

#include "im2d.h"
#include "rga.h"
#include "RgaUtils.h"

#include "rknn_api.h"
#include "postprocess.h"

#include "utils/mpp_decoder.h"
#include "utils/mpp_encoder.h"
#include "utils/drawing.h"
#if defined(BUILD_VIDEO_RTSP)
#include "mk_mediakit.h"
#endif

#define OUT_VIDEO_PATH "out.h264"

// +++ 添加显示功能:定义显示窗口名称 +++
#define DISPLAY_WINDOW_NAME "RKNN YOLOv5 Video Detection"

typedef struct
{
rknn_context rknn_ctx;
rknn_input_output_num io_num;
rknn_tensor_attr *input_attrs;
rknn_tensor_attr *output_attrs;
int model_channel;
int model_width;
int model_height;
FILE *out_fp;
MppDecoder *decoder;
MppEncoder *encoder;
} rknn_app_context_t;

typedef struct
{
int width;
int height;
int width_stride;
int height_stride;
int format;
char *virt_addr;
int fd;
} image_frame_t;

/*-------------------------------------------
                  Functions
-------------------------------------------*/

static void dump_tensor_attr(rknn_tensor_attr *attr)
{
    printf("  index=%d, name=%s, n_dims=%d, dims=[%d, %d, %d, %d], n_elems=%d, size=%d, fmt=%s, type=%s, qnt_type=%s, "
        "zp=%d, scale=%f\n",
        attr->index, attr->name, attr->n_dims, attr->dims[0], attr->dims[1], attr->dims[2], attr->dims[3],
        attr->n_elems, attr->size, get_format_string(attr->fmt), get_type_string(attr->type),
        get_qnt_type_string(attr->qnt_type), attr->zp, attr->scale);
}

double __get_us(struct timeval t) { return (t.tv_sec * 1000000 + t.tv_usec); }

static unsigned char *load_data(FILE *fp, size_t ofst, size_t sz)
{
    unsigned char *data;
    int ret;
    data = NULL;
    if (NULL == fp)
    {
        return NULL;
    }
    ret = fseek(fp, ofst, SEEK_SET);
    if (ret != 0)
    {
        printf("blob seek failure.\n");
        return NULL;
    }

    data = (unsigned char *)malloc(sz);
    if (data == NULL)
    {
        printf("buffer malloc failure.\n");
        return NULL;
    }
    ret = fread(data, 1, sz, fp);
    return data;
}

static unsigned char *read_file_data(const char *filename, int *model_size)
{
  FILE *fp;
  unsigned char *data;

  fp = fopen(filename, "rb");
  if (NULL == fp)
  {
    printf("Open file %s failed.\n", filename);
    return NULL;
  }

  fseek(fp, 0, SEEK_END);
  int size = ftell(fp);

  data = load_data(fp, 0, size);

  fclose(fp);

  *model_size = size;
  return data;
}

static int write_data_to_file(const char *path, char *data, unsigned int size)
{
  FILE *fp;

  fp = fopen(path, "w");
  if (fp == NULL)
  {
    printf("open error: %s", path);
    return -1;
  }

  fwrite(data, 1, size, fp);
  fflush(fp);

  fclose(fp);
  return 0;
}

static int init_model(const char *model_path, rknn_app_context_t *app_ctx)
{
  int ret;
  rknn_context ctx;

  /* Create the neural network */
  printf("Loading mode...\n");
  int model_data_size = 0;
  unsigned char *model_data = read_file_data(model_path, &model_data_size);
  if (model_data == NULL)
  {
    return -1;
  }

  ret = rknn_init(&ctx, model_data, model_data_size, 0, NULL);
  if (ret < 0)
  {
    printf("rknn_init error ret=%d\n", ret);
    return -1;
  }

  if (model_data)
  {
    free(model_data);
  }

  rknn_sdk_version version;
  ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &version, sizeof(rknn_sdk_version));
  if (ret < 0)
  {
    printf("rknn_query RKNN_QUERY_SDK_VERSION error ret=%d\n", ret);
    return -1;
  }
  printf("sdk version: %s driver version: %s\n", version.api_version, version.drv_version);

  ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &app_ctx->io_num, sizeof(rknn_input_output_num));
  if (ret < 0)
  {
    printf("rknn_query RKNN_QUERY_IN_OUT_NUM error ret=%d\n", ret);
    return -1;
  }
  printf("model input num: %d, output num: %d\n", app_ctx->io_num.n_input, app_ctx->io_num.n_output);

  rknn_tensor_attr *input_attrs = (rknn_tensor_attr *)malloc(app_ctx->io_num.n_input * sizeof(rknn_tensor_attr));
  memset(input_attrs, 0, app_ctx->io_num.n_input * sizeof(rknn_tensor_attr));
  for (int i = 0; i < app_ctx->io_num.n_input; i++)
  {
    input_attrs[i].index = i;
    ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr));
    if (ret < 0)
    {
      printf("rknn_query RKNN_QUERY_INPUT_ATTR error ret=%d\n", ret);
      return -1;
    }
    dump_tensor_attr(&(input_attrs[i]));
  }

  rknn_tensor_attr *output_attrs = (rknn_tensor_attr *)malloc(app_ctx->io_num.n_output * sizeof(rknn_tensor_attr));
  memset(output_attrs, 0, app_ctx->io_num.n_output * sizeof(rknn_tensor_attr));
  for (int i = 0; i < app_ctx->io_num.n_output; i++)
  {
    output_attrs[i].index = i;
    ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr));
    if (ret < 0)
    {
      printf("rknn_query RKNN_QUERY_OUTPUT_ATTR error ret=%d\n", ret);
      return -1;
    }
    dump_tensor_attr(&(output_attrs[i]));
  }

  app_ctx->input_attrs = input_attrs;
  app_ctx->output_attrs = output_attrs;
  app_ctx->rknn_ctx = ctx;

  if (input_attrs[0].fmt == RKNN_TENSOR_NCHW)
  {
    printf("model is NCHW input fmt\n");
    app_ctx->model_channel = input_attrs[0].dims[1];
    app_ctx->model_height = input_attrs[0].dims[2];
    app_ctx->model_width = input_attrs[0].dims[3];
  }
  else
  {
    printf("model is NHWC input fmt\n");
    app_ctx->model_height = input_attrs[0].dims[1];
    app_ctx->model_width = input_attrs[0].dims[2];
    app_ctx->model_channel = input_attrs[0].dims[3];
  }
  printf("model input height=%d, width=%d, channel=%d\n", app_ctx->model_height, app_ctx->model_width, app_ctx->model_channel);

  // +++ 添加显示功能:初始化OpenCV显示窗口 +++
  cv::namedWindow(DISPLAY_WINDOW_NAME, cv::WINDOW_NORMAL);
  cv::resizeWindow(DISPLAY_WINDOW_NAME, 1280, 720); // 调整窗口大小,适配显示器

  return 0;
}

static int release_model(rknn_app_context_t *app_ctx)
{
  if (app_ctx->rknn_ctx != 0)
  {
    rknn_destroy(app_ctx->rknn_ctx);
  }
  free(app_ctx->input_attrs);
  free(app_ctx->output_attrs);
  deinitPostProcess();

  // +++ 添加显示功能:释放显示窗口 +++
  cv::destroyWindow(DISPLAY_WINDOW_NAME);

  return 0;
}

static int inference_model(rknn_app_context_t *app_ctx, image_frame_t *img, detect_result_group_t *detect_result)
{
  int ret;
  rknn_context ctx = app_ctx->rknn_ctx;
  int model_width = app_ctx->model_width;
  int model_height = app_ctx->model_height;
  int model_channel = app_ctx->model_channel;

  struct timeval start_time, stop_time;
  const float nms_threshold = NMS_THRESH;
  const float box_conf_threshold = BOX_THRESH;
  // You may not need resize when src resulotion equals to dst resulotion
  void *resize_buf = nullptr;
  // init rga context
  rga_buffer_t src;
  rga_buffer_t dst;
  im_rect src_rect;
  im_rect dst_rect;
  memset(&src_rect, 0, sizeof(src_rect));
  memset(&dst_rect, 0, sizeof(dst_rect));
  memset(&src, 0, sizeof(src));
  memset(&dst, 0, sizeof(dst));

  printf("input image %dx%d stride %dx%d format=%d\n", img->width, img->height, img->width_stride, img->height_stride, img->format);

  float scale_w = (float)model_width / img->width;
  float scale_h = (float)model_height / img->height;

  rknn_input inputs[1];
  memset(inputs, 0, sizeof(inputs));
  inputs[0].index = 0;
  inputs[0].type = RKNN_TENSOR_UINT8;
  inputs[0].size = model_width * model_height * model_channel;
  inputs[0].fmt = RKNN_TENSOR_NHWC;
  inputs[0].pass_through = 0;

  printf("resize with RGA!\n");
  resize_buf = malloc(model_width * model_height * model_channel);
  memset(resize_buf, 0, model_width * model_height * model_channel);

  src = wrapbuffer_virtualaddr((void *)img->virt_addr, img->width, img->height, img->format, img->width_stride, img->height_stride);
  dst = wrapbuffer_virtualaddr((void *)resize_buf, model_width, model_height, RK_FORMAT_RGB_888);
  ret = imcheck(src, dst, src_rect, dst_rect);
  if (IM_STATUS_NOERROR != ret)
  {
    printf("%d, check error! %s", __LINE__, imStrError((IM_STATUS)ret));
    return -1;
  }
  IM_STATUS STATUS = imresize(src, dst);

  inputs[0].buf = resize_buf;

  gettimeofday(&start_time, NULL);
  rknn_inputs_set(ctx, app_ctx->io_num.n_input, inputs);

  rknn_output outputs[app_ctx->io_num.n_output];
  memset(outputs, 0, sizeof(outputs));
  for (int i = 0; i < app_ctx->io_num.n_output; i++)
  {
    outputs[i].index = i;
    outputs[i].want_float = 0;
  }

  ret = rknn_run(ctx, NULL);
  ret = rknn_outputs_get(ctx, app_ctx->io_num.n_output, outputs, NULL);
  gettimeofday(&stop_time, NULL);
  printf("once run use %f ms\n", (__get_us(stop_time) - __get_us(start_time)) / 1000);

  printf("post process config: box_conf_threshold = %.2f, nms_threshold = %.2f\n", box_conf_threshold, nms_threshold);

  std::vector<float> out_scales;
  std::vector<int32_t> out_zps;
  for (int i = 0; i < app_ctx->io_num.n_output; ++i)
  {
    out_scales.push_back(app_ctx->output_attrs[i].scale);
    out_zps.push_back(app_ctx->output_attrs[i].zp);
  }
  BOX_RECT pads;
  memset(&pads, 0, sizeof(BOX_RECT));

  post_process((int8_t *)outputs[0].buf, (int8_t *)outputs[1].buf, (int8_t *)outputs[2].buf, model_height, model_width,
               box_conf_threshold, nms_threshold, pads, scale_w, scale_h, out_zps, out_scales, detect_result);
  ret = rknn_outputs_release(ctx, app_ctx->io_num.n_output, outputs);

  if (resize_buf)
  {
    free(resize_buf);
  }
  return 0;
}


void mpp_decoder_frame_callback(void *userdata, int width_stride, int height_stride, int width, int height, int format, int fd, void *data)
{

  rknn_app_context_t *ctx = (rknn_app_context_t *)userdata;

  int ret = 0;
  static int frame_index = 0;
  frame_index++;

  void *mpp_frame = NULL;
  int mpp_frame_fd = 0;
  void *mpp_frame_addr = NULL;
  int enc_data_size;

  rga_buffer_t origin;
  rga_buffer_t src;

  // +++ 修复:提前声明显示相关变量(移到goto跳转前) +++
  cv::Mat yuv_frame, bgr_frame;

  if (ctx->encoder == NULL)
  {
    MppEncoder *mpp_encoder = new MppEncoder();
    MppEncoderParams enc_params;
    memset(&enc_params, 0, sizeof(MppEncoderParams));
    enc_params.width = width;
    enc_params.height = height;
    enc_params.hor_stride = width_stride;
    enc_params.ver_stride = height_stride;
    enc_params.fmt = MPP_FMT_YUV420SP;
    // enc_params.type = MPP_VIDEO_CodingHEVC;
    // Note: rk3562只能支持h264格式的视频流
    enc_params.type = MPP_VIDEO_CodingAVC;
    mpp_encoder->Init(enc_params, NULL);

    ctx->encoder = mpp_encoder;
  }

  int enc_buf_size = ctx->encoder->GetFrameSize();
  char *enc_data = (char *)malloc(enc_buf_size);

  image_frame_t img;
  img.width = width;
  img.height = height;
  img.width_stride = width_stride;
  img.height_stride = height_stride;
  img.fd = fd;
  img.virt_addr = (char *)data;
  img.format = RK_FORMAT_YCbCr_420_SP;
  detect_result_group_t detect_result;
  memset(&detect_result, 0, sizeof(detect_result_group_t));

  ret = inference_model(ctx, &img, &detect_result);
  if (ret != 0)
  {
    printf("inference model fail\n");
    goto RET; // 此处跳转不会跨越变量初始化(yuv_frame/bgr_frame已提前声明)
  }

  mpp_frame = ctx->encoder->GetInputFrameBuffer();
  mpp_frame_fd = ctx->encoder->GetInputFrameBufferFd(mpp_frame);
  mpp_frame_addr = ctx->encoder->GetInputFrameBufferAddr(mpp_frame);

  // Copy To another buffer avoid to modify mpp decoder buffer
  origin = wrapbuffer_fd(fd, width, height, RK_FORMAT_YCbCr_420_SP, width_stride, height_stride);
  src = wrapbuffer_fd(mpp_frame_fd, width, height, RK_FORMAT_YCbCr_420_SP, width_stride, height_stride);
  imcopy(origin, src);

  /*
  // Draw objects
  for (int i = 0; i < detect_result.count; i++)
  {
    detect_result_t *det_result = &(detect_result.results[i]);
    printf("%s @ (%d %d %d %d) %f\n", det_result->name, det_result->box.left, det_result->box.top,
           det_result->box.right, det_result->box.bottom, det_result->prop);
    int x1 = det_result->box.left;
    int y1 = det_result->box.top;
    int x2 = det_result->box.right;
    int y2 = det_result->box.bottom;
    draw_rectangle_yuv420sp((unsigned char *)mpp_frame_addr, width_stride, height_stride, x1, y1, x2 - x1 + 1, y2 - y1 + 1, 0x00FF0000, 4);
  }
*/

  // +++ 显示功能:初始化Mat变量(此时goto已不会跨越初始化) +++
  // 1. 将YUV420SP数据转换为OpenCV的Mat格式
  yuv_frame = cv::Mat(height * 3 / 2, width, CV_8UC1, (unsigned char *)mpp_frame_addr);
  // 2. YUV420SP(NV12)转BGR(RK3588的Mpp输出是NV12格式)
  cv::cvtColor(yuv_frame, bgr_frame, cv::COLOR_YUV2BGR_NV12);

  // Draw objects
  for (int i = 0; i < detect_result.count; i++)
  {
    detect_result_t *det_result = &(detect_result.results[i]);
    printf("%s @ (%d %d %d %d) %f\n", det_result->name, det_result->box.left, det_result->box.top,
          det_result->box.right, det_result->box.bottom, det_result->prop);
    int x1 = det_result->box.left;
    int y1 = det_result->box.top;
    int x2 = det_result->box.right;
    int y2 = det_result->box.bottom;
    // 绘制红色检测框(原有代码)
    //draw_rectangle_yuv420sp((unsigned char *)mpp_frame_addr, width_stride, height_stride, x1, y1, x2 - x1 + 1, y2 - y1 + 1, 0x00FF0000, 4);

    cv::rectangle(
        bgr_frame,                  // 绘制目标:BGR帧(与文字标注统一)
        cv::Point(x1, y1),          // 左上角坐标
        cv::Point(x2, y2),          // 右下角坐标
        cv::Scalar(0, 0, 255),      // 颜色:红色(BGR格式,注意顺序是B=0, G=0, R=255)
        1                           // 线宽:1px(与原效果一致)
      );


    // +++ 新增:添加文字标注(物体名称+置信度%) +++
    // 1. 拼接文字内容(名称 + 置信度保留2位小数 + %)
    char text[64];
    snprintf(text, sizeof(text), "%s %.2f%%", det_result->name, det_result->prop * 100);
    
    // 2. 设置文字位置(检测框左上角上方10像素,避免遮挡;若y1太靠上则放在下方)
    int text_x = x1;
    int text_y = (y1 > 20) ? (y1 - 10) : (y2 + 20);
    
  // 黑色背景框(提高可读性)
  cv::Size text_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 2, NULL);
  cv::rectangle(
    bgr_frame,
    cv::Point(text_x - 2, text_y - text_size.height - 2),
    cv::Point(text_x + text_size.width + 2, text_y + 2),
    cv::Scalar(0, 0, 0),  // 黑色背景
    -1                    // 填充背景
  );

    // 3. 在BGR帧上绘制文字(白色字体,粗体,字号0.5)
    cv::putText(
      bgr_frame,                  // 绘制目标帧(BGR格式)
      text,                       // 文字内容
      cv::Point(text_x, text_y),  // 文字位置
      cv::FONT_HERSHEY_SIMPLEX,   // 字体
      0.5,                        // 字号
      cv::Scalar(255, 255, 255),  // 文字颜色(白色)
      2                           // 文字线条粗细(避免模糊)
    );
  }



  // 3. 实时显示画面
  cv::imshow(DISPLAY_WINDOW_NAME, bgr_frame);
  // 4. 等待10ms,确保画面流畅显示(按ESC键可退出)
  if (cv::waitKey(100) == 27) {
    exit(0); // 按ESC键退出程序
  }

  // Encode to file
  // Write header on first frame
  if (frame_index == 1)
  {
    enc_data_size = ctx->encoder->GetHeader(enc_data, enc_buf_size);
    fwrite(enc_data, 1, enc_data_size, ctx->out_fp);
  }
  memset(enc_data, 0, enc_buf_size);
  enc_data_size = ctx->encoder->Encode(mpp_frame, enc_data, enc_buf_size);
  fwrite(enc_data, 1, enc_data_size, ctx->out_fp);

RET: // 跳转目标(此时所有变量要么已提前声明,要么不在跳转路径上)
  if (enc_data != nullptr)
  {
    free(enc_data);
  }
}

int process_video_file(rknn_app_context_t *ctx, const char *path)
{
  int video_size;
  char *video_data = (char *)read_file_data(path, &video_size);
  char *video_data_end = video_data + video_size;
  printf("read video size=%d\n", video_size);

  const int SIZE = 8192;
  char *video_data_ptr = video_data;

  do
  {
    int pkt_eos = 0;
    int size = SIZE;
    if (video_data_ptr + size >= video_data_end)
    {
      pkt_eos = 1;
      size = video_data_end - video_data_ptr;
    }

    ctx->decoder->Decode((uint8_t *)video_data_ptr, size, pkt_eos);

    video_data_ptr += size;

    if (video_data_ptr >= video_data_end)
    {
      printf("reset decoder\n");
      break;
    }

    // LOGD("video_data_ptr=%p video_data_end=%p", video_data_ptr, video_data_end);
    // usleep(10*1000);
  } while (1);

  return 0;
}

#if defined(BUILD_VIDEO_RTSP)
void API_CALL on_track_frame_out(void *user_data, mk_frame frame)
{
  rknn_app_context_t *ctx = (rknn_app_context_t *)user_data;
  printf("on_track_frame_out ctx=%p\n", ctx);
  const char *data = mk_frame_get_data(frame);
  size_t size = mk_frame_get_data_size(frame);
  printf("decoder=%p\n", ctx->decoder);
  ctx->decoder->Decode((uint8_t *)data, size, 0);
}

void API_CALL on_mk_play_event_func(void *user_data, int err_code, const char *err_msg, mk_track tracks[],
                                    int track_count)
{
  rknn_app_context_t *ctx = (rknn_app_context_t *)user_data;
  if (err_code == 0)
  {
    // success
    printf("play success!");
    int i;
    for (i = 0; i < track_count; ++i)
    {
      if (mk_track_is_video(tracks[i]))
      {
        log_info("got video track: %s", mk_track_codec_name(tracks[i]));
        // 监听track数据回调
        mk_track_add_delegate(tracks[i], on_track_frame_out, user_data);
      }
    }
  }
  else
  {
    printf("play failed: %d %s", err_code, err_msg);
  }
}

void API_CALL on_mk_shutdown_func(void *user_data, int err_code, const char *err_msg, mk_track tracks[], int track_count)
{
  printf("play interrupted: %d %s", err_code, err_msg);
}

int process_video_rtsp(rknn_app_context_t *ctx, const char *url)
{
  mk_config config;
  memset(&config, 0, sizeof(mk_config));
  config.log_mask = LOG_CONSOLE;
  mk_env_init(&config);
  mk_player player = mk_player_create();
  mk_player_set_on_result(player, on_mk_play_event_func, ctx);
  mk_player_set_on_shutdown(player, on_mk_shutdown_func, ctx);
  mk_player_play(player, url);

  printf("enter any key to exit\n");
  getchar();

  if (player)
  {
    mk_player_release(player);
  }
  return 0;
}
#endif

/*-------------------------------------------
                  Main Functions
-------------------------------------------*/
int main(int argc, char **argv)
{
  int status = 0;
  int ret;

  if (argc != 4)
  {
    printf("Usage: %s <rknn_model> <video_path> <video_type 264/265> \n", argv[0]);
    return -1;
  }

  char *model_name = (char *)argv[1];
  char *video_name = argv[2];
  int video_type = atoi(argv[3]);

  rknn_app_context_t app_ctx;
  memset(&app_ctx, 0, sizeof(rknn_app_context_t));

  ret = init_model(model_name, &app_ctx);
  if (ret != 0)
  {
    printf("init model fail\n");
    return -1;
  }

  if (app_ctx.decoder == NULL)
  {
    MppDecoder *decoder = new MppDecoder();
    decoder->Init(video_type, 30, &app_ctx);
    decoder->SetCallback(mpp_decoder_frame_callback);
    app_ctx.decoder = decoder;
  }

  if (app_ctx.out_fp == NULL)
  {
    FILE *fp = fopen(OUT_VIDEO_PATH, "w");
    if (fp == NULL)
    {
      printf("open %s error\n", OUT_VIDEO_PATH);
      return -1;
    }
    app_ctx.out_fp = fp;
  }

  printf("app_ctx=%p decoder=%p\n", &app_ctx, app_ctx.decoder);

  if (strncmp(video_name, "rtsp", 4) == 0)
  {
#if defined(BUILD_VIDEO_RTSP)
    process_video_rtsp(&app_ctx, video_name);
#else
    printf("rtsp no support\n");
#endif
  }
  else
  {
    process_video_file(&app_ctx, video_name);
  }

  printf("waiting finish\n");
  usleep(3 * 1000 * 1000);

  // release
  fflush(app_ctx.out_fp);
  fclose(app_ctx.out_fp);

  if (app_ctx.decoder != nullptr)
  {
    delete (app_ctx.decoder);
    app_ctx.decoder = nullptr;
  }
  if (app_ctx.encoder != nullptr)
  {
    delete (app_ctx.encoder);
    app_ctx.encoder = nullptr;
  }

  release_model(&app_ctx);

  return 0;
}

CMakeLists文件:

复制代码
cmake_minimum_required(VERSION 3.6)

project(rknn_yolov5_demo)

set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED ON)

# skip 3rd-party lib dependencies
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -Wl,--allow-shlib-undefined")

# install target and libraries
set(CMAKE_INSTALL_PREFIX ${CMAKE_SOURCE_DIR}/install/rknn_yolov5_demo_${CMAKE_SYSTEM_NAME})

set(CMAKE_SKIP_INSTALL_RPATH FALSE)
set(CMAKE_BUILD_WITH_INSTALL_RPATH TRUE)
set(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_PREFIX}/lib")

if(CMAKE_C_COMPILER MATCHES "aarch64")
  set(LIB_ARCH aarch64)
else()
  set(LIB_ARCH armhf)
endif()

include_directories(${CMAKE_SOURCE_DIR})

# rknn api
set(RKNN_API_PATH ${CMAKE_SOURCE_DIR}/../../runtime//${CMAKE_SYSTEM_NAME}/librknn_api)

if(CMAKE_SYSTEM_NAME STREQUAL "Android")
  set(RKNN_RT_LIB ${RKNN_API_PATH}/${CMAKE_ANDROID_ARCH_ABI}/librknnrt.so)
else()
  set(RKNN_RT_LIB ${RKNN_API_PATH}/${LIB_ARCH}/librknnrt.so)
endif()

include_directories(${RKNN_API_PATH}/include)
include_directories(${CMAKE_SOURCE_DIR}/../3rdparty)


# opencv
if(CMAKE_SYSTEM_NAME STREQUAL "Android")
  set(OpenCV_DIR ${CMAKE_SOURCE_DIR}/../3rdparty/opencv/OpenCV-android-sdk/sdk/native/jni/abi-${CMAKE_ANDROID_ARCH_ABI})
else()
  # 注释掉原有强制指定的 3rdparty OpenCV 路径,让 CMake 自动查找系统 OpenCV
  # if(LIB_ARCH STREQUAL "armhf")
  #   set(OpenCV_DIR ${CMAKE_SOURCE_DIR}/../3rdparty/opencv/opencv-linux-armhf/share/OpenCV)
  # else()
  #   set(OpenCV_DIR ${CMAKE_SOURCE_DIR}/../3rdparty/opencv/opencv-linux-aarch64/share/OpenCV)
  # endif()
  
  # 可选:添加系统 OpenCV 查找提示(适配 Debian 11)
  set(OpenCV_INCLUDE_DIRS /usr/include/opencv4)
  set(OpenCV_LIB_DIR /usr/lib/aarch64-linux-gnu)
endif()


find_package(OpenCV REQUIRED)

# 新增:链接系统 OpenCV 库路径
link_directories(${OpenCV_LIB_DIR})

# rga
# comes from https://github.com/airockchip/librga
set(RGA_PATH ${CMAKE_SOURCE_DIR}/../3rdparty/rga/)
if(CMAKE_SYSTEM_NAME STREQUAL "Android")
  set(RGA_LIB ${RGA_PATH}/libs/AndroidNdk/${CMAKE_ANDROID_ARCH_ABI}/librga.so)
else()
  if(CMAKE_C_COMPILER MATCHES "aarch64")
    set(LIB_ARCH aarch64)
  else()
    set(LIB_ARCH armhf)
  endif()

  set(RGA_LIB ${RGA_PATH}/libs/Linux//gcc-${LIB_ARCH}/librga.so)
endif()
include_directories( ${RGA_PATH}/include)

# mpp
set(MPP_PATH ${CMAKE_CURRENT_SOURCE_DIR}/../3rdparty/mpp)

if(CMAKE_SYSTEM_NAME STREQUAL "Linux")
  set(MPP_LIBS ${MPP_PATH}/${CMAKE_SYSTEM_NAME}/${LIB_ARCH}/librockchip_mpp.so)
elseif(CMAKE_SYSTEM_NAME STREQUAL "Android")
  set(MPP_LIBS ${MPP_PATH}/${CMAKE_SYSTEM_NAME}/${CMAKE_ANDROID_ARCH_ABI}/libmpp.so)
endif()

include_directories(${MPP_PATH}/include)

# zlmediakit
set(ZLMEDIAKIT_PATH ${CMAKE_SOURCE_DIR}/../3rdparty/zlmediakit)

if(CMAKE_SYSTEM_NAME STREQUAL "Linux")
  include_directories(${ZLMEDIAKIT_PATH}/include)
  set(ZLMEDIAKIT_LIBS ${ZLMEDIAKIT_PATH}/${LIB_ARCH}/libmk_api.so)
endif()

if(ZLMEDIAKIT_LIBS)
  add_definitions(-DBUILD_VIDEO_RTSP)
endif()

set(CMAKE_INSTALL_RPATH "lib")

# rknn_yolov5_demo
include_directories(${CMAKE_SOURCE_DIR}/include)

add_executable(rknn_yolov5_demo
  src/main.cc
  src/preprocess.cc
  src/postprocess.cc
)

target_link_libraries(rknn_yolov5_demo
  ${RKNN_RT_LIB}
  ${RGA_LIB}
  ${OpenCV_LIBS}
)

if(MPP_LIBS)
  add_executable(rknn_yolov5_video_demo
    src/main_video.cc
    src/postprocess.cc
    utils/mpp_decoder.cpp
    utils/mpp_encoder.cpp
    utils/drawing.cpp
  )
  target_link_libraries(rknn_yolov5_video_demo
    ${RKNN_RT_LIB}
    ${RGA_LIB}
    ${OpenCV_LIBS}
    ${MPP_LIBS}
    ${ZLMEDIAKIT_LIBS}
  )
endif()

# install target and libraries
set(CMAKE_INSTALL_PREFIX ${CMAKE_SOURCE_DIR}/install/rknn_yolov5_demo_${CMAKE_SYSTEM_NAME})
install(TARGETS rknn_yolov5_demo DESTINATION ./)

install(PROGRAMS ${RKNN_RT_LIB} DESTINATION lib)
install(PROGRAMS ${RGA_LIB} DESTINATION lib)
install(DIRECTORY model/${TARGET_SOC} DESTINATION ./model)
file(GLOB IMAGE_FILES "model/*.jpg")
file(GLOB LABEL_FILE "model/*.txt")
install(FILES ${IMAGE_FILES} DESTINATION ./model/)
install(FILES ${LABEL_FILE} DESTINATION ./model/)

if(MPP_LIBS)
  install(TARGETS rknn_yolov5_video_demo DESTINATION ./)
  install(PROGRAMS ${MPP_LIBS} DESTINATION lib)
endif()

if(ZLMEDIAKIT_LIBS)
  install(PROGRAMS ${ZLMEDIAKIT_LIBS} DESTINATION lib)
endif()

代码修改完成后,需要重新编译。

复制代码
#运行测试程序
./rknn_yolov5_demo model/RK3588/yolov5s-640-640.rknn model/test.jpg

6、测试性能分析

NPU占用率查看命令,因驱动版本不同,NPU占用率分析工具也不一样。

复制代码
sudo watch -n 1 cat /sys/kernel/debug/rknpu/load
相关推荐
CHrisFC2 小时前
江苏硕晟 LIMS 系统:加速环境检测机构合规化进程的利器
大数据·人工智能
SEO_juper2 小时前
Query Fan-Out:AI搜索时代,内容如何突破“隐形壁垒”被引用?
人工智能·ai·seo·数字营销
Wilber的技术分享2 小时前
【Transformer原理详解2】Decoder结构解析、Decoder-Only结构中的Decoder
人工智能·笔记·深度学习·llm·transformer
智能相对论2 小时前
Hilight开启公测:营销视频的“DeepSeek时刻”,来了
大数据·人工智能·音视频
8K超高清2 小时前
博冠8K广播级讯道摄像机获国际设计大奖
网络·算法·fpga开发·接口隔离原则·智能硬件
Tezign_space2 小时前
企业级AI发展新趋势:Copilot、流程自动化与智能体系统
人工智能·自动化·copilot·dam·上下文工程·gea·智能体系统
木斯佳2 小时前
HarmonyOS 6实战(源码教学篇)— Speech Kit 新特性【仿某云音乐实现并集成AI字幕】
人工智能·华为·harmonyos
愚公搬代码2 小时前
【愚公系列】《AI+直播营销》050-销讲型直播内容策划(销讲型直播的社群4步销售法)
人工智能
袋鼠云数栈2 小时前
袋鼠云产品功能更新报告(第16期)|离线开发新进化:AI辅助与架构升级
大数据·人工智能·架构