1. 类型系统设计
rust
// 定义数据类型
#[derive(Debug, Clone)]
enum DataType {
Scalar(f64),
Vector(Vec<f64>),
Matrix(Vec<Vec<f64>>),
TimeSeries(TimeSeriesData),
}
// 时间序列数据
struct TimeSeriesData {
timestamps: Vec<i64>,
values: Vec<f64>,
frequency: Frequency,
}
// 算子特征(Trait)
pub trait Operator: Send + Sync {
/// 算子名称
fn name(&self) -> &str;
/// 计算算子
fn compute(&self, inputs: &[DataType]) -> Result<DataType, OperatorError>;
/// 获取梯度(用于自动微分)
fn gradient(&self, inputs: &[DataType]) -> Result<Vec<DataType>, OperatorError> {
// 默认实现:数值微分
self.numerical_gradient(inputs)
}
/// 获取算子签名
fn signature(&self) -> OperatorSignature;
}
2. 高性能算子实现
rust
// 使用SIMD指令优化的移动平均算子
use std::simd::{f64x4, Simd};
pub struct MovingAverage {
window: usize,
}
impl MovingAverage {
pub fn new(window: usize) -> Self {
assert!(window > 0, "Window must be positive");
MovingAverage { window }
}
// SIMD版本(比普通版本快4-8倍)
pub fn compute_simd(&self, data: &[f64]) -> Vec<f64> {
let n = data.len();
if n < self.window {
return Vec::new();
}
let mut result = Vec::with_capacity(n - self.window + 1);
// 使用SIMD处理
let simd_width = 4; // f64x4处理4个元素
for i in 0..=(n - self.window) {
let mut sum = 0.0;
// SIMD求和
let mut j = 0;
while j + simd_width <= self.window {
let chunk = &data[i + j..i + j + simd_width];
let simd_vec = f64x4::from_slice(chunk);
sum += simd_vec.reduce_sum();
j += simd_width;
}
// 处理剩余元素
for k in j..self.window {
sum += data[i + k];
}
result.push(sum / self.window as f64);
}
result
}
}
// 实现Operator trait
impl Operator for MovingAverage {
fn name(&self) -> &str {
"MovingAverage"
}
fn compute(&self, inputs: &[DataType]) -> Result<DataType, OperatorError> {
match &inputs[0] {
DataType::Vector(data) => {
let result = self.compute_simd(data);
Ok(DataType::Vector(result))
}
_ => Err(OperatorError::InvalidInputType),
}
}
fn signature(&self) -> OperatorSignature {
OperatorSignature {
name: "MovingAverage".to_string(),
inputs: vec![ParamType::Vector],
outputs: vec![ParamType::Vector],
params: vec![("window".to_string(), ParamType::Integer)],
}
}
}
3. 并行计算支持
rust
use rayon::prelude::*;
use std::sync::Arc;
// 并行算子执行器
pub struct ParallelExecutor {
num_threads: usize,
}
impl ParallelExecutor {
pub fn new(num_threads: usize) -> Self {
ParallelExecutor { num_threads }
}
pub fn execute_batch(
&self,
operator: Arc<dyn Operator>,
batch_data: Vec<Vec<f64>>,
) -> Vec<Vec<f64>> {
// 使用Rayon进行并行计算
batch_data
.into_par_iter()
.with_min_len(self.num_threads)
.map(|data| {
let result = operator.compute(&[DataType::Vector(data)]);
match result {
Ok(DataType::Vector(vec)) => vec,
_ => vec![],
}
})
.collect()
}
}
// 横截面排名的并行实现
pub struct CrossSectionalRank;
impl Operator for CrossSectionalRank {
fn compute(&self, inputs: &[DataType]) -> Result<DataType, OperatorError> {
match &inputs[0] {
DataType::Matrix(matrix) => {
// 对每一行(时间点)进行横截面排名
let ranked: Vec<Vec<f64>> = matrix
.par_iter() // 并行迭代行
.map(|row| {
// 计算每个元素在行中的排名
let n = row.len();
let mut indices: Vec<usize> = (0..n).collect();
// 按值排序索引
indices.sort_by(|&i, &j| {
row[i].partial_cmp(&row[j]).unwrap_or(std::cmp::Ordering::Equal)
});
// 创建排名结果
let mut ranks = vec![0.0; n];
for (rank, &idx) in indices.iter().enumerate() {
ranks[idx] = (rank as f64) / (n as f64 - 1.0); // 归一化到[0,1]
}
ranks
})
.collect();
Ok(DataType::Matrix(ranked))
}
_ => Err(OperatorError::InvalidInputType),
}
}
}
4. GPU加速算子
rust
// 使用wgpu进行GPU计算
use wgpu::{Buffer, Device, Queue};
use bytemuck::{Pod, Zeroable};
#[repr(C)]
#[derive(Clone, Copy, Pod, Zeroable)]
struct GPUVector {
data: [f32; 4], // GPU使用f32更快
}
pub struct GPUOperator {
device: Device,
queue: Queue,
}
impl GPUOperator {
pub async fn new() -> Self {
// 初始化GPU设备
let instance = wgpu::Instance::default();
let adapter = instance
.request_adapter(&wgpu::RequestAdapterOptions::default())
.await
.unwrap();
let (device, queue) = adapter
.request_device(&wgpu::DeviceDescriptor::default(), None)
.await
.unwrap();
GPUOperator { device, queue }
}
// GPU加速的矩阵乘法(用于因子组合)
pub async fn matrix_multiply_gpu(&self, a: &[f32], b: &[f32], m: usize, n: usize, p: usize) -> Vec<f32> {
// 创建GPU缓冲区
let buffer_a = self.device.create_buffer_with_data(
bytemuck::cast_slice(a),
wgpu::BufferUsage::STORAGE,
);
let buffer_b = self.device.create_buffer_with_data(
bytemuck::cast_slice(b),
wgpu::BufferUsage::STORAGE,
);
let buffer_result = self.device.create_buffer(
&wgpu::BufferDescriptor {
label: Some("Result Buffer"),
size: (m * p * std::mem::size_of::<f32>()) as u64,
usage: wgpu::BufferUsage::STORAGE | wgpu::BufferUsage::COPY_SRC,
mapped_at_creation: false,
},
);
// 创建计算管道
let compute_pipeline = self.create_matrix_multiply_pipeline();
// 执行计算
let mut encoder = self.device.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: Some("Matrix Multiply Encoder"),
});
{
let mut compute_pass = encoder.begin_compute_pass();
compute_pass.set_pipeline(&compute_pipeline);
compute_pass.set_bind_group(0, &bind_group, &[]);
compute_pass.dispatch(m as u32, p as u32, 1);
}
// 复制结果回CPU
let staging_buffer = self.device.create_buffer(
&wgpu::BufferDescriptor {
label: Some("Staging Buffer"),
size: buffer_result.size(),
usage: wgpu::BufferUsage::MAP_READ | wgpu::BufferUsage::COPY_DST,
mapped_at_creation: false,
},
);
encoder.copy_buffer_to_buffer(&buffer_result, 0, &staging_buffer, 0, buffer_result.size());
self.queue.submit(Some(encoder.finish()));
// 映射缓冲区并读取结果
let buffer_slice = staging_buffer.slice(..);
let (tx, rx) = futures::channel::oneshot::channel();
buffer_slice.map_async(wgpu::MapMode::Read, move |result| {
tx.send(result).unwrap();
});
self.device.poll(wgpu::Maintain::Wait);
rx.await.unwrap().unwrap();
let data = buffer_slice.get_mapped_range();
let result = bytemuck::cast_slice(&data).to_vec();
result
}
}
5. 自动微分算子
rust
// 支持自动微分的算子
use autodiff::*;
#[derive(Differentiable)]
struct LinearOperator {
weight: f64,
bias: f64,
}
impl LinearOperator {
pub fn new(weight: f64, bias: f64) -> Self {
LinearOperator { weight, bias }
}
#[differentiable]
pub fn forward(&self, x: f64) -> f64 {
self.weight * x + self.bias
}
}
// 在量化中的应用:策略梯度的自动微分
pub struct StrategyGradient {
operators: Vec<Box<dyn DifferentiableOperator>>,
}
pub trait DifferentiableOperator: Operator {
fn forward(&self, inputs: &[f64]) -> Vec<f64>;
fn backward(&self, grad_output: &[f64]) -> Vec<f64>;
}
// 使用自动微分计算因子对收益的梯度
impl StrategyGradient {
pub fn compute_gradient(&self, factors: &[Vec<f64>], returns: &[f64]) -> Vec<f64> {
// 将数据转换为可微分的变量
let factor_vars: Vec<_> = factors
.iter()
.map(|f| f.iter().map(|&x| x.into_var()).collect::<Vec<_>>())
.collect();
let return_vars: Vec<_> = returns.iter().map(|&r| r.into_var()).collect();
// 构建计算图
let mut loss = 0.0.into_var();
for (factor, ret) in factor_vars.iter().zip(return_vars.iter()) {
// 计算每个因子的贡献
let prediction = self.predict(factor);
let diff = prediction - ret;
loss = loss + diff * diff; // MSE损失
}
// 反向传播
loss.backward();
// 收集梯度
let gradients: Vec<_> = factor_vars
.iter()
.flat_map(|fv| fv.iter().map(|v| v.grad()))
.collect();
gradients
}
}
6. 与Python的互操作
rust
// 使用PyO3暴露Rust算子给Python
use pyo3::prelude::*;
use pyo3::wrap_pyfunction;
use numpy::{PyArray1, PyArray2, IntoPyArray};
use numpy::PyArrayDyn;
#[pyclass]
struct RustOperatorLibrary {
registry: OperatorRegistry,
}
#[pymethods]
impl RustOperatorLibrary {
#[new]
fn new() -> Self {
RustOperatorLibrary {
registry: OperatorRegistry::new(),
}
}
fn register_operator(&mut self, name: String, operator: PyObject) -> PyResult<()> {
// 将Python算子包装为Rust算子
let rust_operator = PythonOperator::new(operator);
self.registry.register(name, Box::new(rust_operator));
Ok(())
}
fn moving_average(&self, data: &PyArray1<f64>, window: usize) -> PyResult<PyArray1<f64>> {
let data_vec = data.as_slice()?.to_vec();
let ma = MovingAverage::new(window);
let result = ma.compute(&[DataType::Vector(data_vec)])?;
match result {
DataType::Vector(vec) => {
Python::with_gil(|py| {
Ok(vec.into_pyarray(py).to_owned())
})
}
_ => Err(PyErr::new::<pyo3::exceptions::PyValueError, _>(
"Unexpected result type",
)),
}
}
fn cross_sectional_rank(&self, matrix: &PyArray2<f64>) -> PyResult<PyArray2<f64>> {
// 获取数据
let matrix_data = matrix.as_array();
let nrows = matrix_data.shape()[0];
let ncols = matrix_data.shape()[1];
let mut matrix_vec = Vec::with_capacity(nrows);
for i in 0..nrows {
let mut row = Vec::with_capacity(ncols);
for j in 0..ncols {
row.push(matrix_data[[i, j]]);
}
matrix_vec.push(row);
}
// 执行算子
let rank_op = CrossSectionalRank;
let result = rank_op.compute(&[DataType::Matrix(matrix_vec)])?;
match result {
DataType::Matrix(mat) => {
Python::with_gil(|py| {
let array = PyArray2::new(py, [mat.len(), mat[0].len()], false);
for (i, row) in mat.iter().enumerate() {
for (j, &val) in row.iter().enumerate() {
array[[i, j]] = val;
}
}
Ok(array.to_owned())
})
}
_ => Err(PyErr::new::<pyo3::exceptions::PyValueError, _>(
"Unexpected result type",
)),
}
}
}
// Python中调用
"""
import numpy as np
from rust_operators import RustOperatorLibrary
lib = RustOperatorLibrary()
# 计算移动平均
prices = np.random.randn(1000)
ma_result = lib.moving_average(prices, window=20)
# 计算横截面排名
matrix = np.random.randn(100, 50) # 100个时间点,50只股票
rank_result = lib.cross_sectional_rank(matrix)
"""
7. 完整的Rust算子库示例
rust
// 完整的算子库架构
mod operators {
pub mod base;
pub mod timeseries;
pub mod cross_section;
pub mod statistical;
pub mod technical;
pub mod machine_learning;
}
mod engine {
pub mod executor;
pub mod optimizer;
pub mod scheduler;
}
mod data {
pub mod types;
pub mod provider;
pub mod cache;
}
mod utils {
pub mod validation;
pub mod logging;
pub mod profiling;
}
// 主库接口
pub struct QuantLib {
registry: OperatorRegistry,
executor: ExecutionEngine,
data_provider: DataProvider,
cache: FactorCache,
}
impl QuantLib {
pub fn new() -> Self {
let mut registry = OperatorRegistry::new();
// 注册内置算子
registry.register("MA", Box::new(timeseries::MovingAverage::default()));
registry.register("EMA", Box::new(timeseries::ExponentialMovingAverage::default()));
registry.register("STD", Box::new(timeseries::RollingStd::default()));
registry.register("ZSCORE", Box::new(cross_section::ZScore::default()));
registry.register("RANK", Box::new(cross_section::Rank::default()));
registry.register("CORR", Box::new(statistical::Correlation::default()));
registry.register("REGRESSION", Box::new(statistical::LinearRegression::default()));
let executor = ExecutionEngine::new();
let data_provider = DataProvider::new();
let cache = FactorCache::new();
QuantLib {
registry,
executor,
data_provider,
cache,
}
}
pub fn compute_factor(
&self,
factor_name: &str,
symbols: &[String],
start_date: &str,
end_date: &str,
) -> Result<HashMap<String, Vec<f64>>, LibError> {
// 1. 检查缓存
if let Some(cached) = self.cache.get(factor_name, symbols, start_date, end_date) {
return Ok(cached);
}
// 2. 获取数据
let price_data = self.data_provider.get_price_data(symbols, start_date, end_date)?;
// 3. 获取算子
let operator = self.registry.get_operator(factor_name)
.ok_or_else(|| LibError::OperatorNotFound(factor_name.to_string()))?;
// 4. 执行计算
let mut results = HashMap::new();
for (symbol, prices) in price_data {
let input = DataType::TimeSeries(TimeSeriesData::new(prices));
let result = self.executor.execute(&*operator, &[input])?;
if let DataType::Vector(values) = result {
results.insert(symbol, values);
}
}
// 5. 缓存结果
self.cache.set(factor_name, symbols, start_date, end_date, &results);
Ok(results)
}
}