大模型应用于因果推断任务案例

第一部分:解决因果图构建难题

**痛点:**人工构建成本高

传统因果推断的第一步通常是画出"因果图"(Causal Graph),即搞清楚变量之间谁影响谁。这通常需要依赖领域专家的知识手工绘制,耗时耗力且容易出错。
大模型的解法(架构图):

图中使用了一个多模态大模型架构(包含Image, Audio, Video输入,经过Modality Encoder和Connector进入LLM)。

这意味着模型可以阅读海量的文本、识别图像和视频中的信息,利用其预训练的广博知识。

最终效果:基于文本与知识的因果图自动构建

**逻辑:**利用大模型强大的语义理解和知识库,自动从海量数据中提取变量之间的因果关系,从而自动生成因果图,极大地降低了人工门槛和成本。

第二部分:解决反事实推理难题

**痛点:**现实无法直接观测

因果推断的核心难题是"反事实"(Counterfactual)无法观测。例如,一个人吃了药病好了,我们无法同时观测到"如果他没吃药"会发生什么。现实中只有一种结果发生。

大模型的解法(架构图):

流程包括:Real Data(真实数据) -> World Model(世界模型) -> Simulation(模拟)。

模型通过学习现实世界的动力学(Dynamics Reconstruction),构建了一个虚拟的模拟器。

最终效果:辅助生成合理的反事实情景与推断(图中黄色高亮部分)

逻辑:既然现实中无法观测"没吃药"的结果,那就让大模型充当"世界模型"进行模拟。在模拟环境中,我们可以推演各种"如果...会怎样"的反事实情景,从而进行因果推断。

第三部分:解决非结构化数据难题

**痛点:**因果效应估计(通常依赖结构化数据)

传统的因果效应计算(如ATE计算)通常需要整齐的表格数据(结构化数据)。但在现实场景(如医疗)中,大量信息存在于医生手写的病历、影像、文献等非结构化数据中,难以直接利用。

大模型的解法(架构图):

输入端包括互联网数据、专业数据库、私有数据库(涵盖文本、影像等多模态海量数据)。

应用场景覆盖就诊前、中、后以及医学研究。

最终效果:非结构化数据下的因果分析能力

逻辑:大模型擅长处理非结构化数据(文本、图片)。它可以直接阅读电子病历和文献,从中提取出因果分析所需的特征和变量,甚至直接进行推理,从而让因果分析能够应用于那些数据杂乱、非结构化的复杂场景(如医疗)。

相关推荐
那个村的李富贵4 小时前
光影魔术师:CANN加速实时图像风格迁移,让每张照片秒变大师画作
人工智能·aigc·cann
腾讯云开发者6 小时前
“痛点”到“通点”!一份让 AI 真正落地产生真金白银的实战指南
人工智能
CareyWYR6 小时前
每周AI论文速递(260202-260206)
人工智能
hopsky7 小时前
大模型生成PPT的技术原理
人工智能
禁默7 小时前
打通 AI 与信号处理的“任督二脉”:Ascend SIP Boost 加速库深度实战
人工智能·信号处理·cann
心疼你的一切8 小时前
昇腾CANN实战落地:从智慧城市到AIGC,解锁五大行业AI应用的算力密码
数据仓库·人工智能·深度学习·aigc·智慧城市·cann
AI绘画哇哒哒8 小时前
【干货收藏】深度解析AI Agent框架:设计原理+主流选型+项目实操,一站式学习指南
人工智能·学习·ai·程序员·大模型·产品经理·转行
数据分析能量站8 小时前
Clawdbot(现名Moltbot)-现状分析
人工智能
那个村的李富贵8 小时前
CANN加速下的AIGC“即时翻译”:AI语音克隆与实时变声实战
人工智能·算法·aigc·cann
二十雨辰8 小时前
[python]-AI大模型
开发语言·人工智能·python