【人工智能学习-AI入试相关题目练习-第十二次】

人工智能学习-AI入试相关题目练习-第十二次

1-前言

为了应对大学院考试,我们来学习相关人工智能相关知识,并做各种练习。

通过学习,也算是做笔记,让自己更理解些。

3-问题题目训练


問1(幅優先探索:BFS)

题目在问什么?

ノードA 出发,按从左到右幅優先探索(BFS)

题目要你填表里 ステップ4ステップ7 时的:

  • オープンリスト(Open list):接下来"排队等着被展开"的节点
  • クローズドリスト(Closed list):已经"取出来展开过"的节点

图结构(按图)是:

  • A 的子:B, C
  • B 的子:D, E
  • C 的子:F

BFS 的规则就是:先进先出(队列) ,并且展开子节点时左→右入队


过程(关键步骤)

  • Step1:Open=[A], Close=[]
  • Step2:取出A → 入Close;把B,C入Open
    Open=[B,C], Close=[A]
  • Step3:取出B → 入Close;把D,E入Open
    Open=[C,D,E], Close=[A,B]
  • Step4:取出C → 入Close;把F入Open
    → 就得到题目要填的 (a)(b)

之后继续:

  • Step5:取出D → Close=[A,B,C,D], Open=[E,F]
  • Step6:取出E → Close=[A,B,C,D,E], Open=[F]
  • Step7:取出F → Close=[A,B,C,D,E,F], Open=[]
    → 就得到题目要填的 ©(d)

✅ 問1答案

ステップ4

  • (a) オープンリスト:[D, E, F]
  • (b) クローズドリスト:[A, B, C]

ステップ7

  • © オープンリスト:[]
  • (d) クローズドリスト:[A, B, C, D, E, F]

問2(ベイズ:条件付き概率)

题目在问什么?

已知店里只卖两类电脑 X / Y ,两者都有不良率。

当你买到的是不良品 时,它属于 X 的概率是:

P(X \\mid 不良)=0.125

题目给了 5 个选项,每个选项给:

  • (P(X))(X 的销售比例)
  • (P(不良\mid X)=0.4)
  • (P(不良\mid Y)=0.7)

要你选哪一组数据能让 (P(X \mid 不良)=0.125)。


关键公式(贝叶斯)

P(X\\mid 不良)=\\frac{P(不良\\mid X)P(X)} {P(不良\\mid X)P(X)+P(不良\\mid Y)P(Y)}

其中 (P(Y)=1-P(X))

代入题目固定值:

0.125=\\frac{0.4p}{0.4p+0.7(1-p)}

解得:

p=0.2


✅ 問2答案

正确选项是:(d)

  • (P(X)=0.2)
  • (P(不良\mid X)=0.4)
  • (P(不良\mid Y)=0.7)

(也就是"卖 X 的比例是 0.2"那一项)


問3(空栏填空:K-means / Bellman / 最急降下)

题目在问什么?

这题就是考你是不是知道三个经典概念的标准表述,属于立命馆常见"术语挖空"。


① K-means

题干:

K-means 法では,データを (a) クラスタに帰属させ,その後に (b) を更新する。

意思(中文):

K-means 先把每个数据分到最近的 簇,然后更新簇中心

✅ 答案:

  • (a) 最近傍の(最も近い)
    中文:最近的 / 最近邻的
  • (b) クラスタ中心(重心)
    中文:簇中心(质心)

② ベルマン方程式(强化学习)

题干:

ベルマン方程式では,© の状態価値を次の報酬と (d) の価値だけで定義する。

意思(中文):

"当前状态"的价值,可以用"下一步的奖励 + 下一状态的价值"来定义(递归)。

✅ 答案:

  • © 現在
    中文:当前
  • (d) 次状態
    中文:下一状态

③ 最急降下法(梯度下降)

题干:

誤差が徐々に (e) ように,誤差関数の (f) を計算してパラメータを修正する。

意思(中文):

为了让误差逐渐变小,计算误差函数的梯度来更新参数。

✅ 答案:

  • (e) 小さくなる
    中文:变小
  • (f) 勾配
    中文:梯度

✅ 問3总答案汇总

  • (a) 最近傍の(最も近い)
  • (b) クラスタ中心(重心)
  • © 現在
  • (d) 次状態
  • (e) 小さくなる
  • (f) 勾配

【模擬問題①】(既出系:強化学習・MDP)

問題1

強化学習では,エージェントが環境との相互作用を通じて学習を行う。

このとき,状態遷移が現在の状態と行動のみに依存するという性質を (a) という。

この仮定に基づき,強化学習の問題は (b) として定式化される。

(b) は,状態集合,行動集合,遷移確率,および © から構成される。

価値関数に基づく手法では,将来得られる報酬を現在の価値として評価するため,

報酬は (d) によって重み付けされる。

このとき,最適価値関数は (e) によって再帰的に定義され,

この関係式を (f) 方程式と呼ぶ。

(a)~(f) に入る最も適切な語句を記せ。


【模擬問題②】(既出系:教師あり学習・最適化)

問題2

教師あり学習では,入力データとそれに対応する (a) の組を用いて学習を行う。

モデルの学習は,一般に (b) を最小化する最適化問題として定式化される。

この最適化において,パラメータの更新方向を決定するために © が計算され,

更新量は (d) によって調整される。

勾配に基づく最適化手法では,誤差関数の形状によっては

局所的な最小値である (e) に収束する可能性がある。

この問題を緩和するため,(f) を導入することで

学習の安定性を向上させる手法が用いられる。

(a)~(f) に入る語句を記せ。


【予測問題①】(新傾向:不確実性・確率推論)

問題3

知能システムが実環境で動作する場合,観測情報にはしばしば (a) が含まれる。

そのため,状態を一意に決定することが困難となる。

このような状況では,状態を (b) として表現し,

観測が得られるたびにその分布を更新する手法が用いられる。

この更新処理は,予測ステップと © ステップから構成され,

前者では (d) に基づいて状態分布を更新する。

後者では,観測モデルを用いて (e) を計算し,

分布の総和が 1 となるように (f) が行われる。

(a)~(f) に入る最も適切な語句を記せ。


【予測問題②】(新傾向:汎化・モデルの限界)

問題4

機械学習モデルは,学習データに対して高い性能を示しても,

未知データに対して同様の性能を示すとは限らない。

このような現象は,モデルが学習データに過度に適合することによって生じ,

一般に (a) と呼ばれる。

(a) が発生すると,モデルの (b) が低下する。

これを防ぐため,学習時にモデルの複雑さを抑制する © が導入される。

また,学習データを複数に分割し,性能を評価する方法として

(d) が用いられる。

さらに,学習途中で性能の悪化を検知し学習を停止する手法を (e) という。

(a)~(e) に入る語句を記せ。


4-练习(日语版本)解析

【模擬問題①】問題1(強化学習・MDP)

アンサー:

  • (a) マルコフ性

    中文:马尔可夫性(只与当前状态和行动有关)

  • (b) マルコフ決定過程(MDP)

    中文:马尔可夫决策过程

  • © 報酬関数

    中文:奖励函数

  • (d) 割引率

    中文:折扣率(γ)

  • (e) ベルマン最適方程式

    中文:贝尔曼最优方程

  • (f) ベルマン

    中文:贝尔曼(人名,用于方程名称)


【模擬問題②】問題2(教師あり学習・最適化)

アンサー:

  • (a) 正解ラベル

    中文:正确标签

  • (b) 損失関数(誤差関数)

    中文:损失函数(误差函数)

  • © 勾配

    中文:梯度

  • (d) 学習率

    中文:学习率

  • (e) 局所最小値

    中文:局部最小值

  • (f) 正則化

    中文:正则化


【予測問題①】問題3(確率的推論・不確実性)

アンサー:

  • (a) ノイズ

    中文:噪声

  • (b) 確率分布

    中文:概率分布

  • © 観測更新

    中文:观测更新(修正步骤)

  • (d) 状態遷移モデル

    中文:状态转移模型

  • (e) 尤度

    中文:似然(likelihood)

  • (f) 正規化

    中文:归一化


【予測問題②】問題4(汎化性能・学習限界)

アンサー:

  • (a) 過学習(オーバーフィッティング)

    中文:过拟合

  • (b) 汎化性能

    中文:泛化性能

  • © 正則化

    中文:正则化

  • (d) 交差検証

    中文:交叉验证

  • (e) 早期終了(Early Stopping)

    中文:提前停止学习


✅ 一页速记版(考前用)

复制代码
マルコフ性 / MDP / 報酬関数 / 割引率 / ベルマン方程式
正解ラベル / 損失関数 / 勾配 / 学習率 / 正則化
ノイズ / 確率分布 / 観測更新 / 正規化
過学習 / 汎化性能 / 交差検証 / 早期終了

5-単語练习(日语版本)

6-总结

知识一点点记录吧,最后应对考试,打下基础

相关推荐
tzc_fly2 小时前
IEEE TPAMI 2026 | ConsistID:多模态高保真肖像生成
人工智能
7***n752 小时前
2026年GEO深度评测:AI时代营销新基建的实践者与分化
大数据·人工智能
愚公搬代码2 小时前
【愚公系列】《AI+直播营销》052-入局 Al 虚拟数字人直播(适合Al虚拟数字人直播的3种直播类型)
人工智能
爱吃泡芙的小白白2 小时前
神经网络压缩实战指南:让大模型“瘦身”跑得更快
人工智能·深度学习·神经网络·模型压缩
cooldream20092 小时前
从语音到策略——ASR + 大语言模型驱动的辩论对话系统设计实践
人工智能·语言模型·具身数字人
人工智能AI技术2 小时前
【Agent从入门到实践】42实战:用Docker打包Agent,实现一键部署
人工智能·python
dream_home84072 小时前
拉普拉斯算子识别图像模糊详解
人工智能·计算机视觉
近津薪荼2 小时前
优选算法——双指针5(单调性)
c++·学习·算法
MobiusStack2 小时前
MBTI性格测试图文制作指南,用01Agent套用爆款封面模板
人工智能