引言
内存管理是深度学习推理性能的关键因素之一。CANN提供了丰富的内存管理机制和优化策略,通过合理的内存分配、复用和优化,可以显著提升推理性能,降低内存占用,提高资源利用率。
本文将深入介绍CANN的内存管理机制和资源优化方法,帮助开发者构建高效的内存管理方案。
相关链接:
一、CANN内存架构
1.1 内存层次结构
CANN的内存系统采用多层次架构,不同层次的内存具有不同的访问速度和容量。
python
def memory_hierarchy_demo():
"""CANN内存层次结构"""
print("CANN内存层次结构")
print("=" * 50)
print("\n1. Host内存(主机内存)")
print(" - 位置: CPU端")
print(" - 速度: 相对较慢")
print(" - 容量: 大(数十GB)")
print(" - 用途: 数据存储、预处理")
print("\n2. Device内存(设备内存)")
print(" - 位置: 加速器端")
print(" - 速度: 快")
print(" - 容量: 中等(数GB到数十GB)")
print(" - 用途: 模型存储、计算数据")
print("\n3. Unified Memory(统一内存)")
print(" - 位置: Host和Device共享")
print(" - 速度: 中等")
print(" - 容量: 大")
print(" - 用途: 简化编程,自动迁移")
print("\n4. 缓存(Cache)")
print(" - 位置: 硬件内部")
print(" - 速度: 最快")
print(" - 容量: 小(KB到MB)")
print(" - 用途: 热点数据缓存")
print("=" * 50)
memory_hierarchy_demo()
1.2 内存访问模式
python
def memory_access_patterns():
"""内存访问模式"""
print("内存访问模式")
print("=" * 50)
patterns = [
"1. 顺序访问",
" - 特点: 连续访问内存",
" - 性能: 高(缓存命中率高)",
" - 适用: 矩阵运算、卷积操作",
"",
"2. 随机访问",
" - 特点: 非连续访问内存",
" - 性能: 低(缓存命中率低)",
" - 适用: 稀疏操作、索引访问",
"",
"3. 流式访问",
" - 特点: 单向连续访问",
" - 性能: 高(预取效果好)",
" - 适用: 数据加载、结果输出",
"",
"4. 重访问",
" - 特点: 重复访问同一数据",
" - 性能: 取决于缓存策略",
" - 适用: 迭代计算、累积操作"
]
for pattern in patterns:
print(pattern)
print("\n优化建议:")
print("- 尽量使用顺序访问")
print("- 提高数据局部性")
print("- 减少随机访问")
print("- 利用缓存机制")
print("=" * 50)
memory_access_patterns()
二、内存分配与释放
2.1 基础内存操作
python
import acl
import numpy as np
class CANNMemoryManager:
"""CANN内存管理器"""
def __init__(self, device_id=0):
self.device_id = device_id
ret = acl.init()
ret = acl.rt.set_device(device_id)
def malloc_host(self, size):
"""分配Host内存"""
ptr, ret = acl.rt.malloc_host(size)
if ret != 0:
raise RuntimeError(f"Host内存分配失败: {ret}")
return ptr
def malloc_device(self, size):
"""分配Device内存"""
ptr, ret = acl.rt.malloc(size, 0)
if ret != 0:
raise RuntimeError(f"Device内存分配失败: {ret}")
return ptr
def free_host(self, ptr):
"""释放Host内存"""
ret = acl.rt.free_host(ptr)
if ret != 0:
raise RuntimeError(f"Host内存释放失败: {ret}")
def free_device(self, ptr):
"""释放Device内存"""
ret = acl.rt.free(ptr)
if ret != 0:
raise RuntimeError(f"Device内存释放失败: {ret}")
def memcpy_h2d(self, device_ptr, host_ptr, size):
"""Host到Device数据传输"""
ret = acl.rt.memcpy(device_ptr, size,
host_ptr, size,
acl.rt.MEMCPY_HOST_TO_DEVICE)
if ret != 0:
raise RuntimeError(f"数据传输失败: {ret}")
def memcpy_d2h(self, host_ptr, device_ptr, size):
"""Device到Host数据传输"""
ret = acl.rt.memcpy(host_ptr, size,
device_ptr, size,
acl.rt.MEMCPY_DEVICE_TO_HOST)
if ret != 0:
raise RuntimeError(f"数据传输失败: {ret}")
# 使用示例
mem_manager = CANNMemoryManager(device_id=0)
# 分配内存
data = np.random.rand(1024, 1024).astype(np.float32)
host_ptr = mem_manager.malloc_host(data.nbytes)
device_ptr = mem_manager.malloc_device(data.nbytes)
# 数据传输
mem_manager.memcpy_h2d(device_ptr, host_ptr, data.nbytes)
# ... 执行计算 ...
# 释放内存
mem_manager.free_host(host_ptr)
mem_manager.free_device(device_ptr)
2.2 内存对齐
python
def aligned_memory_allocation():
"""内存对齐分配"""
print("内存对齐优化")
print("=" * 50)
print("\n1. 为什么需要内存对齐:")
reasons = [
"- 硬件要求: 某些硬件要求内存对齐",
"- 访问效率: 对齐的内存访问更快",
"- 原子操作: 某些操作需要内存对齐",
"- DMA传输: DMA通常需要对齐的内存"
]
for reason in reasons:
print(f" {reason}")
print("\n2. 常见对齐要求:")
alignments = [
"- 32字节对齐: SIMD操作",
"- 64字节对齐: 缓存行大小",
"- 128字节对齐: 某些加速器",
"- 512字节对齐: 大块数据传输"
]
for align in alignments:
print(f" {align}")
print("\n3. CANN内存对齐:")
print("- acl.rt.malloc()自动对齐")
print("- 通常对齐到32或64字节")
print("- 确保硬件最优访问")
print("=" * 50)
aligned_memory_allocation()
三、内存复用策略
3.1 内存池实现
python
import threading
class MemoryPool:
"""内存池"""
def __init__(self, device_id=0):
self.device_id = device_id
self.pools = {} # {size: [(ptr, used_timestamp), ...]}
self.lock = threading.Lock()
self.max_pool_size = 1000 # 最大池大小
def allocate(self, size):
"""从池中分配内存"""
with self.lock:
# 尝试从池中获取
pool_key = self._get_pool_key(size)
if pool_key in self.pools and self.pools[pool_key]:
ptr, _ = self.pools[pool_key].pop()
return ptr
# 池中没有,分配新的
ptr, ret = acl.rt.malloc(size, 0)
if ret != 0:
raise RuntimeError(f"内存分配失败: {ret}")
return ptr
def deallocate(self, ptr, size):
"""归还内存到池中"""
with self.lock:
pool_key = self._get_pool_key(size)
if pool_key not in self.pools:
self.pools[pool_key] = []
# 检查池大小
if len(self.pools[pool_key]) >= self.max_pool_size:
# 池已满,直接释放
acl.rt.free(ptr)
else:
# 归还到池中
self.pools[pool_key].append((ptr, time.time()))
def _get_pool_key(self, size):
"""获取池的键值(按大小分组)"""
# 将大小对齐到最近的2的幂
aligned_size = 1
while aligned_size < size:
aligned_size <<= 1
return aligned_size
def clear(self):
"""清空内存池"""
with self.lock:
for pool_key, blocks in self.pools.items():
for ptr, _ in blocks:
acl.rt.free(ptr)
self.pools.clear()
# 使用示例
memory_pool = MemoryPool(device_id=0)
# 分配内存
data = np.random.rand(1024, 1024).astype(np.float32)
ptr1 = memory_pool.allocate(data.nbytes)
ptr2 = memory_pool.allocate(data.nbytes)
# 使用内存...
# 归还内存
memory_pool.deallocate(ptr1, data.nbytes)
memory_pool.deallocate(ptr2, data.nbytes)
# 清空池
memory_pool.clear()
3.2 中间结果复用
python
class IntermediateBufferPool:
"""中间结果缓冲池"""
def __init__(self, device_id=0):
self.device_id = device_id
self.buffers = {} # {shape: [(ptr, ref_count), ...]}
self.lock = threading.Lock()
def get_buffer(self, shape, dtype=np.float32):
"""获取缓冲区"""
size = np.prod(shape) * np.dtype(dtype).itemsize
buffer_key = (shape, dtype)
with self.lock:
if buffer_key in self.buffers and self.buffers[buffer_key]:
ptr, ref_count = self.buffers[buffer_key].pop()
# 增加引用计数
return ptr, ref_count + 1
# 分配新缓冲区
ptr, ret = acl.rt.malloc(size, 0)
if ret != 0:
raise RuntimeError(f"缓冲区分配失败: {ret}")
return ptr, 1
def release_buffer(self, ptr, shape, dtype=np.float32, ref_count=1):
"""释放缓冲区"""
buffer_key = (shape, dtype)
with self.lock:
if ref_count > 1:
# 仍有引用,减计数
self.buffers[buffer_key].append((ptr, ref_count - 1))
else:
# 没有引用,归还到池中
if buffer_key not in self.buffers:
self.buffers[buffer_key] = []
self.buffers[buffer_key].append((ptr, 0))
def clear(self):
"""清空缓冲池"""
with self.lock:
for buffer_key, buffers in self.buffers.items():
for ptr, _ in buffers:
acl.rt.free(ptr)
self.buffers.clear()
四、内存优化技术
4.1 零拷贝优化
python
def zero_copy_demo():
"""零拷贝优化"""
print("零拷贝优化技术")
print("=" * 50)
print("\n1. 什么是零拷贝:")
print(" - 直接访问数据,无需复制")
print(" - 减少内存带宽消耗")
print(" - 降低CPU开销")
print("\n2. CANN零拷贝技术:")
techniques = [
"a) Device直接访问",
" - 在Device端处理数据",
" - 避免Host和Device间传输",
" - 使用acl.rt.malloc()直接分配",
"b) Pinned Memory",
" - 使用页锁定内存",
" - DMA直接传输",
" - 使用acl.rt.malloc_host()",
"c) Shared Memory",
" - Host和Device共享内存",
" - 减少数据复制",
" - 适合小数据频繁交互"
]
for tech in techniques:
print(f"\n{tech}")
print("\n3. 使用示例:")
code = """
# 使用Pinned Memory实现零拷贝
host_ptr = acl.rt.malloc_host(size)
device_ptr = acl.rt.malloc(size, 0)
# DMA直接传输,无需CPU拷贝
acl.rt.memcpy(device_ptr, size, host_ptr, size,
acl.rt.MEMCPY_HOST_TO_DEVICE)
"""
print(code)
print("\n4. 性能提升:")
print("- 减少CPU负载")
print("- 提高传输速度")
print("- 降低功耗")
print("=" * 50)
zero_copy_demo()
4.2 内存预分配
python
class PreallocatedMemoryManager:
"""预分配内存管理器"""
def __init__(self, device_id=0, sizes=None):
self.device_id = device_id
self.memory_blocks = {} # {size: [ptr1, ptr2, ...]}
# 预分配内存
if sizes:
for size in sizes:
count = max(10, size // (1024 * 1024)) # 每MB至少10个块
for _ in range(count):
ptr, ret = acl.rt.malloc(size, 0)
if ret == 0:
if size not in self.memory_blocks:
self.memory_blocks[size] = []
self.memory_blocks[size].append(ptr)
def allocate(self, size):
"""分配内存"""
# 找到合适的预分配块
for pool_size in sorted(self.memory_blocks.keys()):
if pool_size >= size:
if self.memory_blocks[pool_size]:
ptr = self.memory_blocks[pool_size].pop()
return ptr
# 没有合适的预分配块,分配新的
ptr, ret = acl.rt.malloc(size, 0)
if ret != 0:
raise RuntimeError(f"内存分配失败: {ret}")
return ptr
def deallocate(self, ptr, size):
"""释放内存"""
# 检查是否有对应大小的池
if size in self.memory_blocks:
self.memory_blocks[size].append(ptr)
else:
acl.rt.free(ptr)
def get_memory_info(self):
"""获取内存信息"""
info = {}
for size, blocks in self.memory_blocks.items():
info[size] = {
'total_blocks': len(blocks),
'available_blocks': len(blocks),
'total_size': size * len(blocks)
}
return info
# 使用示例
sizes = [1024, 4096, 16384, 65536, 262144, 1048576] # 常用大小
mem_manager = PreallocatedMemoryManager(device_id=0, sizes=sizes)
# 快速分配内存
ptr1 = mem_manager.allocate(1024)
ptr2 = mem_manager.allocate(5000) # 使用4096的块
# 释放内存
mem_manager.deallocate(ptr1, 1024)
mem_manager.deallocate(ptr2, 5000)
# 查看内存信息
print(mem_manager.get_memory_info())
五、动态内存管理
5.1 动态Shape内存管理
python
class DynamicShapeMemoryManager:
"""动态Shape内存管理器"""
def __init__(self, device_id=0):
self.device_id = device_id
self.shape_history = {} # {shape_tuple: count}
self.memory_cache = {} # {shape: ptr}
self.lock = threading.Lock()
def allocate_for_shape(self, shape, dtype=np.float32):
"""为特定Shape分配内存"""
size = np.prod(shape) * np.dtype(dtype).itemsize
shape_key = tuple(shape)
with self.lock:
# 记录Shape使用频率
if shape_key not in self.shape_history:
self.shape_history[shape_key] = 0
self.shape_history[shape_key] += 1
# 检查是否有缓存的内存
if shape_key in self.memory_cache:
return self.memory_cache[shape_key]
# 分配新内存
ptr, ret = acl.rt.malloc(size, 0)
if ret != 0:
raise RuntimeError(f"内存分配失败: {ret}")
# 缓存常用Shape的内存
if self.shape_history[shape_key] > 5: # 使用超过5次才缓存
self.memory_cache[shape_key] = ptr
return ptr
def get_shape_statistics(self):
"""获取Shape统计信息"""
with self.lock:
sorted_shapes = sorted(
self.shape_history.items(),
key=lambda x: x[1],
reverse=True
)
return sorted_shapes[:10] # 返回前10个常用Shape
def clear_cache(self):
"""清空缓存"""
with self.lock:
for ptr in self.memory_cache.values():
acl.rt.free(ptr)
self.memory_cache.clear()
# 使用示例
shape_manager = DynamicShapeMemoryManager(device_id=0)
# 处理不同Shape的输入
shapes = [(1, 3, 224, 224), (1, 3, 320, 320), (1, 3, 640, 640)]
for shape in shapes:
ptr = shape_manager.allocate_for_shape(shape)
# 使用内存...
print(f"为Shape {shape} 分配内存")
# 查看常用Shape
print("常用Shape统计:")
print(shape_manager.get_shape_statistics())
5.2 内存碎片整理
python
def memory_defragmentation():
"""内存碎片整理"""
print("内存碎片整理")
print("=" * 50)
print("\n1. 内存碎片问题:")
problems = [
" - 频繁分配释放导致碎片",
" - 降低内存利用率",
" - 影响分配性能",
" - 可能导致分配失败"
]
for problem in problems:
print(problem)
print("\n2. 碎片整理策略:")
strategies = [
" a) 定期整理",
" - 设置整理周期",
" - 在低负载时执行",
" - 释放并重新分配",
" b) 内存池",
" - 预分配大块内存",
" - 内部管理分配",
" - 减少外部碎片",
" c) 分配策略",
" - 使用固定大小块",
" - 对齐分配",
" - 避免频繁释放"
]
for strategy in strategies:
print(strategy)
print("\n3. 实施建议:")
recommendations = [
" - 使用内存池减少碎片",
" - 定期监控内存使用",
" - 在应用启动时预分配",
" - 避免频繁的小块分配"
]
for rec in recommendations:
print(rec)
print("=" * 50)
memory_defragmentation()
六、内存监控与调试
6.1 内存使用监控
python
class MemoryMonitor:
"""内存监控器"""
def __init__(self, device_id=0):
self.device_id = device_id
self.allocations = {} # {ptr: {'size': size, 'timestamp': time, 'tag': tag}}
self.peak_memory = 0
self.current_memory = 0
self.lock = threading.Lock()
def record_allocation(self, ptr, size, tag=""):
"""记录内存分配"""
with self.lock:
self.allocations[ptr] = {
'size': size,
'timestamp': time.time(),
'tag': tag
}
self.current_memory += size
self.peak_memory = max(self.peak_memory, self.current_memory)
def record_deallocation(self, ptr):
"""记录内存释放"""
with self.lock:
if ptr in self.allocations:
size = self.allocations[ptr]['size']
del self.allocations[ptr]
self.current_memory -= size
def get_memory_info(self):
"""获取内存信息"""
with self.lock:
return {
'current_memory': self.current_memory,
'peak_memory': self.peak_memory,
'allocation_count': len(self.allocations),
'allocations': list(self.allocations.values())
}
def print_memory_summary(self):
"""打印内存摘要"""
info = self.get_memory_info()
print("\n内存使用摘要:")
print(f" 当前内存: {info['current_memory'] / 1024**2:.2f} MB")
print(f" 峰值内存: {info['peak_memory'] / 1024**2:.2f} MB")
print(f" 分配数量: {info['allocation_count']}")
if info['allocation_count'] > 0:
print("\n 最大的10个分配:")
sorted_allocs = sorted(
info['allocations'],
key=lambda x: x['size'],
reverse=True
)[:10]
for alloc in sorted_allocs:
print(f" {alloc['size'] / 1024**2:.2f} MB - {alloc['tag']}")
# 使用示例
memory_monitor = MemoryMonitor(device_id=0)
# 分配内存时记录
ptr1 = acl.rt.malloc(1024*1024, 0)
memory_monitor.record_allocation(ptr1, 1024*1024, tag="buffer1")
ptr2 = acl.rt.malloc(2048*1024, 0)
memory_monitor.record_allocation(ptr2, 2048*1024, tag="buffer2")
# 释放内存时记录
memory_monitor.record_deallocation(ptr1)
acl.rt.free(ptr1)
# 查看内存信息
memory_monitor.print_memory_summary()
6.2 内存泄漏检测
python
class MemoryLeakDetector:
"""内存泄漏检测器"""
def __init__(self):
self.allocations = {}
self.leak_threshold = 10 # 分配次数阈值
def track_allocation(self, ptr, size, location=""):
"""跟踪内存分配"""
stack = traceback.extract_stack()
caller = str(stack[-2]) if len(stack) > 1 else ""
if ptr not in self.allocations:
self.allocations[ptr] = {
'size': size,
'alloc_count': 0,
'free_count': 0,
'locations': [],
'last_alloc_time': time.time()
}
alloc_info = self.allocations[ptr]
alloc_info['alloc_count'] += 1
alloc_info['last_alloc_time'] = time.time()
if location:
alloc_info['locations'].append(location)
if caller:
alloc_info['locations'].append(caller)
def track_deallocation(self, ptr):
"""跟踪内存释放"""
if ptr in self.allocations:
self.allocations[ptr]['free_count'] += 1
def detect_leaks(self):
"""检测内存泄漏"""
leaks = []
for ptr, info in self.allocations.items():
# 检查分配和释放次数不平衡
if info['alloc_count'] > info['free_count'] + self.leak_threshold:
leaks.append({
'ptr': ptr,
'size': info['size'],
'alloc_count': info['alloc_count'],
'free_count': info['free_count'],
'leak_count': info['alloc_count'] - info['free_count'],
'locations': info['locations']
})
return leaks
def print_leak_report(self):
"""打印泄漏报告"""
leaks = self.detect_leaks()
if not leaks:
print("未检测到内存泄漏")
return
print(f"\n检测到 {len(leaks)} 处潜在的内存泄漏:")
for i, leak in enumerate(leaks, 1):
print(f"\n泄漏 #{i}:")
print(f" 指针: 0x{leak['ptr']:X}")
print(f" 大小: {leak['size']} bytes")
print(f" 分配次数: {leak['alloc_count']}")
print(f" 释放次数: {leak['free_count']}")
print(f" 泄漏次数: {leak['leak_count']}")
print(f" 分配位置:")
for loc in leak['locations'][-5:]: # 显示最近5个位置
print(f" {loc}")
# 使用示例
leak_detector = MemoryLeakDetector()
# 分配内存时跟踪
ptr = acl.rt.malloc(1024*1024, 0)
leak_detector.track_allocation(ptr, 1024*1024, location="main:100")
# 检测泄漏
leak_detector.print_leak_report()
七、内存优化最佳实践
7.1 优化建议
python
def memory_optimization_best_practices():
"""内存优化最佳实践"""
print("内存优化最佳实践")
print("=" * 50)
practices = [
"1. 预分配内存",
" - 在应用启动时分配所需内存",
" - 避免运行时频繁分配",
" - 使用内存池管理",
"",
"2. 及时释放",
" - 不再使用的内存立即释放",
" - 避免内存泄漏",
" - 使用RAII模式",
"",
"3. 复用内存",
" - 中间结果复用",
" - 模型参数共享",
" - 批处理内存复用",
"",
"4. 对齐分配",
" - 按照硬件要求对齐",
" - 提升访问效率",
" - 避免性能损失",
"",
"5. 监控使用",
" - 实时监控内存使用",
" - 记录峰值内存",
" - 检测内存泄漏",
"",
"6. 合理规划",
" - 估算内存需求",
" - 留出余量",
" - 分配策略优化"
]
for practice in practices:
print(practice)
print("=" * 50)
memory_optimization_best_practices()
7.2 常见问题
python
def common_memory_issues():
"""常见内存问题及解决方案"""
print("常见内存问题及解决方案")
print("=" * 50)
issues = [
"问题1: 内存不足",
" 原因: Batch Size过大,模型参数多",
" 解决: 减小Batch Size,使用量化,模型压缩",
"",
"问题2: 内存泄漏",
" 原因: 分配后未释放,引用计数错误",
" 解决: 使用内存监控,及时释放,检查代码",
"",
"问题3: 内存碎片",
" 原因: 频繁分配释放,大小不一",
" 解决: 使用内存池,预分配,定期整理",
"",
"问题4: 性能低下",
" 原因: 频繁传输,未对齐,缓存未命中",
" 解决: 减少传输,内存对齐,优化访问模式",
"",
"问题5: 分配失败",
" 原因: 内存不足,碎片严重",
" 解决: 释放内存,整理碎片,增加内存"
]
for issue in issues:
print(issue)
print("=" * 50)
common_memory_issues()
总结
本文详细介绍了CANN内存管理与资源优化的各个方面,包括:
- CANN内存架构和访问模式
- 内存分配与释放
- 内存复用策略
- 内存优化技术
- 动态内存管理
- 内存监控与调试
- 内存优化最佳实践
通过合理的内存管理和优化,可以显著提升CANN应用的性能,降低资源消耗,提高系统稳定性。建议开发者根据具体应用场景,选择合适的内存管理策略,并持续监控和优化内存使用。
相关链接: