CANN算子基础框架库opbase的算子开发与扩展机制深度解析
前言
在深度学习框架中,算子(Operator)是构成计算图的基本单元。opbase是CANN框架中负责算子定义、注册、管理和调度的基础框架库。它提供了一套完整的算子开发基础设施,使开发者能够高效地创建、注册和部署自定义算子。本文将深入剖析opbase的架构设计和核心机制。
相关链接:
- CANN组织链接:https://atomgit.com/cann
- opbase仓库链接:https://atomgit.com/cann/opbase
一、opbase框架概述
1.1 设计理念
opbase框架遵循以下核心设计理念:
- 分层解耦:算子接口定义与内核实现分离
- 多后端支持:支持CPU、NPU等多种计算后端
- 类型安全:强类型系统确保数据类型一致性
- 可扩展性:插件化架构支持动态算子注册
- 性能优先:零拷贝数据传递、内核融合优化
1.2 架构层次
opbase/
├── 算子定义层 (Operator Definition)
│ ├── OpDef - 算子元数据定义
│ ├── Attr - 属性类型系统
│ └── DataType - 数据类型系统
├── 算子注册层 (Operator Registration)
│ ├── OpRegistry - 算子注册表
│ ├── OpKernel - 算子内核注册
│ └── Dialect - 方言系统
├── 形状推导层 (Shape Inference)
│ ├── ShapeFunc - 形状计算函数
│ ├── TensorShape - 张量形状表示
│ └── Dimension - 维度系统
├── 算子执行层 (Operator Execution)
│ ├── OpExecutor - 算子执行器
│ ├── ExecutionContext - 执行上下文
│ └── MemoryManager - 内存管理器
└── 工具支持层 (Utility)
├── OpBuilder - 算子构建器
├── OpPrinter - 算子打印/调试
└── OpValidator - 算子验证
二、核心API详解
2.1 算子定义API
OpDef结构
cpp
/**
* @brief 算子定义结构体
* 描述算子的元数据,包括名称、输入输出、属性等
*/
class OpDef {
public:
// 构造函数
explicit OpDef(const std::string& name) : name_(name) {}
// 设置算子名称
OpDef& Name(const std::string& name) {
name_ = name;
return *this;
}
// 添加输入
OpDef& Input(const std::string& name, DataType dtype,
TensorShape shape = TensorShape::Unknown()) {
inputs_.push_back({name, dtype, shape});
return *this;
}
// 添加输出
OpDef& Output(const std::string& name, DataType dtype,
TensorShape shape = TensorShape::Unknown()) {
outputs_.push_back({name, dtype, shape});
return *this;
}
// 添加属性
template<typename T>
OpDef& Attr(const std::string& name, const T& value) {
attrs_[name] = Attribute(value);
return *this;
}
// 设置描述
OpDef& Description(const std::string& desc) {
description_ = desc;
return *this;
}
// 设置文档
OpDef& Doc(const std::string& doc) {
doc_string_ = doc;
return *this;
}
// 获取方法
const std::string& GetName() const { return name_; }
const std::vector<IOInfo>& GetInputs() const { return inputs_; }
const std::vector<IOInfo>& GetOutputs() const { return outputs_; }
const AttributeMap& GetAttributes() const { return attrs_; }
// 验证算子定义合法性
bool Validate() const;
// 生成算子签名
std::string GetSignature() const;
private:
struct IOInfo {
std::string name;
DataType dtype;
TensorShape shape;
};
std::string name_;
std::string description_;
std::string doc_string_;
std::vector<IOInfo> inputs_;
std::vector<IOInfo> outputs_;
AttributeMap attrs_;
};
// 使用示例
OpDef conv2d_def("Conv2D");
conv2d_def
.Input("input", DT_FLOAT)
.Input("filter", DT_FLOAT)
.Input("bias", DT_FLOAT)
.Output("output", DT_FLOAT)
.Attr<int>("strides", {1, 1})
.Attr<std::string>("padding", "SAME")
.Attr<bool>("use_bias", true)
.Description("2D convolution operator");
属性系统
cpp
/**
* @brief 属性类型枚举
*/
enum AttrType {
ATTR_INT = 0,
ATTR_FLOAT,
ATTR_STRING,
ATTR_BOOL,
ATTR_INT_LIST,
ATTR_FLOAT_LIST,
ATTR_STRING_LIST,
ATTR_BOOL_LIST,
ATTR_TENSOR_SHAPE,
ATTR_DATA_TYPE
};
/**
* @brief 类型安全的属性包装类
*/
class Attribute {
public:
// 构造函数
Attribute() : type_(ATTR_INT) {}
explicit Attribute(int value) : type_(ATTR_INT), int_val_(value) {}
explicit Attribute(float value) : type_(ATTR_FLOAT), float_val_(value) {}
explicit Attribute(const std::string& value)
: type_(ATTR_STRING), string_val_(value) {}
explicit Attribute(bool value) : type_(ATTR_BOOL), bool_val_(value) {}
// 列表构造
explicit Attribute(const std::vector<int>& value)
: type_(ATTR_INT_LIST), int_list_val_(value) {}
explicit Attribute(const std::vector<float>& value)
: type_(ATTR_FLOAT_LIST), float_list_val_(value) {}
// 获取值
int GetInt() const { return int_val_; }
float GetFloat() const { return float_val_; }
const std::string& GetString() const { return string_val_; }
bool GetBool() const { return bool_val_; }
const std::vector<int>& GetIntList() const { return int_list_val_; }
const std::vector<float>& GetFloatList() const { return float_list_val_; }
// 类型检查
AttrType GetType() const { return type_; }
bool IsInt() const { return type_ == ATTR_INT; }
bool IsFloat() const { return type_ == ATTR_FLOAT; }
bool IsString() const { return type_ == ATTR_STRING; }
bool IsBool() const { return type_ == ATTR_BOOL; }
bool IsList() const {
return type_ >= ATTR_INT_LIST && type_ <= ATTR_BOOL_LIST;
}
// 类型转换
template<typename T>
T As() const;
template<>
int As<int>() const { return GetInt(); }
template<>
float As<float>() const { return GetFloat(); }
template<>
std::string As<std::string>() const { return GetString(); }
template<>
bool As<bool>() const { return GetBool(); }
private:
AttrType type_;
union {
int int_val_;
float float_val_;
bool bool_val_;
};
std::string string_val_;
std::vector<int> int_list_val_;
std::vector<float> float_list_val_;
std::vector<std::string> string_list_val_;
std::vector<bool> bool_list_val_;
};
// 属性映射表
using AttributeMap = std::unordered_map<std::string, Attribute>;
2.2 算子注册API
cpp
/**
* @brief 算子注册表
* 单例模式,管理所有已注册的算子
*/
class OpRegistry {
public:
// 获取单例
static OpRegistry& Global() {
static OpRegistry instance;
return instance;
}
// 注册算子定义
Status RegisterOpDef(const OpDef& op_def) {
std::unique_lock<std::shared_mutex> lock(mutex_);
const std::string& name = op_def.GetName();
if (op_defs_.find(name) != op_defs_.end()) {
return Status::Error("Op " + name + " already registered");
}
if (!op_def.Validate()) {
return Status::Error("Invalid op definition: " + name);
}
op_defs_[name] = op_def;
return Status::OK();
}
// 查找算子定义
StatusOr<const OpDef*> LookUpOpDef(const std::string& name) const {
std::shared_lock<std::shared_mutex> lock(mutex_);
auto it = op_defs_.find(name);
if (it == op_defs_.end()) {
return Status::Error("Op not found: " + name);
}
return &it->second;
}
// 获取所有已注册算子名称
std::vector<std::string> GetRegisteredOps() const {
std::shared_lock<std::shared_mutex> lock(mutex_);
std::vector<std::string> names;
names.reserve(op_defs_.size());
for (const auto& pair : op_defs_) {
names.push_back(pair.first);
}
return names;
}
// 检查算子是否已注册
bool IsRegistered(const std::string& name) const {
std::shared_lock<std::shared_mutex> lock(mutex_);
return op_defs_.find(name) != op_defs_.end();
}
private:
OpRegistry() = default;
~OpRegistry() = default;
mutable std::shared_mutex mutex_;
std::unordered_map<std::string, OpDef> op_defs_;
};
/**
* @brief 算子内核注册器
* 管理算子的具体实现内核
*/
class OpKernelRegistry {
public:
// 算子内核接口
class OpKernel {
public:
virtual ~OpKernel() = default;
// 计算输出形状
virtual Status ComputeShape(OpKernelContext* context) = 0;
// 执行计算
virtual Status Compute(OpKernelContext* context) = 0;
// 获取内核签名
virtual std::string GetKernelSignature() const = 0;
};
// 算子内核构建器
using KernelFactory = std::function<std::unique_ptr<OpKernel>()>;
// 注册内核
Status RegisterKernel(const std::string& op_name,
const KernelSignature& signature,
KernelFactory factory) {
std::unique_lock<std::shared_mutex> lock(mutex_);
std::string key = op_name + ":" + signature.ToString();
if (kernels_.find(key) != kernels_.end()) {
return Status::Error("Kernel already registered: " + key);
}
kernels_[key] = std::move(factory);
return Status::OK();
}
// 创建内核实例
StatusOr<std::unique_ptr<OpKernel>> CreateKernel(
const std::string& op_name,
const KernelSignature& signature) {
std::shared_lock<std::shared_mutex> lock(mutex_);
std::string key = op_name + ":" + signature.ToString();
auto it = kernels_.find(key);
if (it == kernels_.end()) {
return Status::Error("Kernel not found: " + key);
}
return it->second();
}
private:
mutable std::shared_mutex mutex_;
std::unordered_map<std::string, KernelFactory> kernels_;
};
// 内核签名
class KernelSignature {
public:
KernelSignature(const std::vector<DataType>& input_dtypes,
const std::vector<DataType>& output_dtypes,
const std::string& device)
: input_dtypes_(input_dtypes),
output_dtypes_(output_dtypes),
device_(device) {}
std::string ToString() const {
std::string sig = device_ + "/";
for (auto dt : input_dtypes_) {
sig += DataTypeToString(dt) + ",";
}
sig += "->";
for (auto dt : output_dtypes_) {
sig += DataTypeToString(dt) + ",";
}
return sig;
}
bool operator==(const KernelSignature& other) const {
return input_dtypes_ == other.input_dtypes_ &&
output_dtypes_ == other.output_dtypes_ &&
device_ == other.device_;
}
private:
std::vector<DataType> input_dtypes_;
std::vector<DataType> output_dtypes_;
std::string device_;
};
2.3 形状推导API
cpp
/**
* @brief 形状推导上下文
*/
class ShapeInferenceContext {
public:
ShapeInferenceContext(const OpDef& op_def,
const std::vector<TensorShape>& input_shapes)
: op_def_(op_def), input_shapes_(input_shapes) {}
// 获取输入形状
const TensorShape& GetInputShape(int index) const {
return input_shapes_.at(index);
}
// 获取输入数量
int GetNumInputs() const {
return input_shapes_.size();
}
// 获取属性值
template<typename T>
T GetAttr(const std::string& name) const {
return op_def_.GetAttributes().at(name).As<T>();
}
// 设置输出形状
void SetOutputShape(int index, const TensorShape& shape) {
if (output_shapes_.size() <= index) {
output_shapes_.resize(index + 1);
}
output_shapes_[index] = shape;
}
// 获取输出形状
const std::vector<TensorShape>& GetOutputShapes() const {
return output_shapes_;
}
// 输入形状完整检查
bool AllInputsKnown() const {
for (const auto& shape : input_shapes_) {
if (shape.IsUnknown()) return false;
}
return true;
}
private:
const OpDef& op_def_;
std::vector<TensorShape> input_shapes_;
std::vector<TensorShape> output_shapes_;
};
/**
* @brief 形状推导函数类型
*/
using ShapeFunc = std::function<Status(ShapeInferenceContext* context)>;
/**
* @brief 注册形状推导函数
*/
class ShapeFuncRegistry {
public:
static ShapeFuncRegistry& Global() {
static ShapeFuncRegistry instance;
return instance;
}
Status Register(const std::string& op_name, ShapeFunc func) {
std::unique_lock<std::mutex> lock(mutex_);
shape_funcs_[op_name] = std::move(func);
return Status::OK();
}
StatusOr<ShapeFunc> Get(const std::string& op_name) const {
std::shared_lock<std::mutex> lock(mutex_);
auto it = shape_funcs_.find(op_name);
if (it == shape_funcs_.end()) {
return Status::Error("Shape function not found: " + op_name);
}
return it->second;
}
private:
mutable std::shared_mutex mutex_;
std::unordered_map<std::string, ShapeFunc> shape_funcs_;
};
// 形状推导辅助函数
namespace shape_inference {
// 一对一形状传递
inline Status PassThrough(ShapeInferenceContext* context) {
const TensorShape& input_shape = context->GetInputShape(0);
context->SetOutputShape(0, input_shape);
return Status::OK();
}
// 广播形状计算
inline Status Broadcast(ShapeInferenceContext* context) {
const TensorShape& shape_a = context->GetInputShape(0);
const TensorShape& shape_b = context->GetInputShape(1);
TensorShape result_shape = BroadcastShapes(shape_a, shape_b);
context->SetOutputShape(0, result_shape);
return Status::OK();
}
// 卷积输出形状计算
inline Status Conv2DShape(ShapeInferenceContext* context) {
const TensorShape& input_shape = context->GetInputShape(0);
const TensorShape& filter_shape = context->GetInputShape(1);
auto strides = context->GetAttr<std::vector<int>>("strides");
auto padding_str = context->GetAttr<std::string>("padding");
// NCHW格式: [N, C, H, W]
int batch = input_shape.dim(0);
int in_channels = input_shape.dim(1);
int in_height = input_shape.dim(2);
int in_width = input_shape.dim(3);
int out_channels = filter_shape.dim(0);
int filter_height = filter_shape.dim(2);
int filter_width = filter_shape.dim(3);
int padding_h, padding_w;
if (padding_str == "SAME") {
int out_h = (in_height + strides[0] - 1) / strides[0];
int out_w = (in_width + strides[1] - 1) / strides[1];
padding_h = std::max(0, (out_h - 1) * strides[0] +
filter_height - in_height);
padding_w = std::max(0, (out_w - 1) * strides[1] +
filter_width - in_width);
} else { // VALID
padding_h = 0;
padding_w = 0;
}
int out_height = (in_height + 2 * padding_h - filter_height) / strides[0] + 1;
int out_width = (in_width + 2 * padding_w - filter_width) / strides[1] + 1;
TensorShape output_shape({batch, out_channels, out_height, out_width});
context->SetOutputShape(0, output_shape);
return Status::OK();
}
} // namespace shape_inference
2.4 执行上下文API
cpp
/**
* @brief 算子执行上下文
* 提供算子执行时所需的所有资源和信息
*/
class OpKernelContext {
public:
OpKernelContext(const std::vector<Tensor*>& inputs,
const std::vector<Attribute>& attrs,
MemoryManager* memory_manager)
: inputs_(inputs),
attrs_(attrs),
memory_manager_(memory_manager) {}
// 获取输入
const Tensor* GetInput(int index) const {
return inputs_.at(index);
}
int GetNumInputs() const { return inputs_.size(); }
// 分配输出
StatusOr<Tensor*> AllocateOutput(int index,
const TensorShape& shape,
DataType dtype) {
if (outputs_.size() <= index) {
outputs_.resize(index + 1);
}
if (outputs_[index] == nullptr) {
size_t bytes = shape.num_elements() * DataTypeSize(dtype);
void* buffer = memory_manager_->Allocate(bytes);
outputs_[index] = new Tensor(buffer, shape, dtype);
}
return outputs_[index];
}
// 获取输出
Tensor* GetOutput(int index) {
return outputs_.at(index);
}
// 获取属性
template<typename T>
T GetAttr(const std::string& name) const {
return attrs_.at(name).As<T>();
}
// 获取设备信息
const DeviceContext& GetDeviceContext() const {
return device_context_;
}
// 获取执行流
const Stream& GetStream() const {
return stream_;
}
// 设置状态信息
void SetStatus(const Status& status) {
status_ = status;
}
const Status& GetStatus() const {
return status_;
}
private:
std::vector<Tensor*> inputs_;
std::vector<Tensor*> outputs_;
std::vector<Attribute> attrs_;
MemoryManager* memory_manager_;
DeviceContext device_context_;
Stream stream_;
Status status_;
};
/**
* @brief 算子执行器
* 负责算子的调度和执行
*/
class OpExecutor {
public:
// 执行算子
Status Execute(const std::string& op_name,
const std::vector<Tensor*>& inputs,
std::vector<Tensor*>& outputs,
const AttributeMap& attrs) {
// 1. 查找算子定义
ASSIGN_OR_RETURN(const OpDef* op_def,
OpRegistry::Global().LookUpOpDef(op_name));
// 2. 检查输入输出数量
if (inputs.size() != op_def->GetInputs().size()) {
return Status::Error("Input count mismatch");
}
// 3. 推导输出形状
std::vector<TensorShape> input_shapes;
for (auto* input : inputs) {
input_shapes.push_back(input->shape());
}
ShapeInferenceContext shape_ctx(*op_def, input_shapes);
ASSIGN_OR_RETURN(ShapeFunc shape_func,
ShapeFuncRegistry::Global().Get(op_name));
RETURN_IF_ERROR(shape_func(&shape_ctx));
// 4. 选择并创建内核
std::vector<DataType> input_dtypes, output_dtypes;
for (auto* input : inputs) {
input_dtypes.push_back(input->dtype());
}
for (const auto& out_shape : shape_ctx.GetOutputShapes()) {
// 简化:使用输入类型
output_dtypes.push_back(input->dtype());
}
KernelSignature signature(input_dtypes, output_dtypes, "NPU");
ASSIGN_OR_RETURN(auto kernel,
OpKernelRegistry::Global().CreateKernel(
op_name, signature));
// 5. 创建执行上下文
std::vector<Attribute> attr_list;
for (const auto& pair : attrs) {
attr_list.push_back(pair.second);
}
OpKernelContext kernel_ctx(inputs, attr_list, memory_manager_);
// 6. 执行内核
RETURN_IF_ERROR(kernel->Compute(&kernel_ctx));
// 7. 返回输出
outputs = kernel_ctx.GetOutputs();
return Status::OK();
}
private:
MemoryManager* memory_manager_;
};
三、应用实践
3.1 自定义算子开发
以下是一个完整的自定义算子开发示例,实现一个Leaky ReLU激活函数:
cpp
#include "opbase/op_registry.h"
#include "opbase/op_kernel.h"
// 1. 定义算子
OpDef& DefineLeakyReluOp() {
static OpDef def("LeakyRelu");
def.Input("x", DT_FLOAT, TensorShape::Unknown())
.Output("y", DT_FLOAT, TensorShape::Unknown())
.Attr<float>("alpha", 0.01f)
.Description("Leaky ReLU activation: max(alpha * x, x)");
return def;
}
// 2. 实现算子内核
class LeakyReluKernel : public OpKernelRegistry::OpKernel {
public:
LeakyReluKernel(float alpha) : alpha_(alpha) {}
Status ComputeShape(OpKernelContext* context) override {
// LeakyReLU保持输入形状
const Tensor* input = context->GetInput(0);
TensorShape output_shape = input->shape();
context->SetOutputShape(0, output_shape);
return Status::OK();
}
Status Compute(OpKernelContext* context) override {
const Tensor* input = context->GetInput(0);
Tensor* output = context->GetOutput(0);
// 获取输入数据
const float* input_data = input->data<float>();
float* output_data = output->data<float>();
int64_t num_elements = input->shape().num_elements();
// NPU执行路径
if (input->on_device()) {
return ComputeOnDevice(input, output, context);
}
// CPU回退路径
for (int64_t i = 0; i < num_elements; ++i) {
output_data[i] = std::max(alpha_ * input_data[i], input_data[i]);
}
return Status::OK();
}
std::string GetKernelSignature() const override {
return "LeakyRelu_NPU_FLOAT32_FLOAT32";
}
private:
Status ComputeOnDevice(const Tensor* input, Tensor* output,
OpKernelContext* context) {
// 调用NPU内核
void* input_ptr = input->device_ptr();
void* output_ptr = output->device_ptr();
int64_t count = input->shape().num_elements();
// 使用aclnn API
aclnnStatus ret = aclnnInplaceLeakyRelu(
(aclTensor*)input_ptr,
alpha_,
(aclTensor*)output_ptr,
context->GetStream().GetHandle(),
context->GetWorkspace());
if (ret != ACLNN_SUCCESS) {
return Status::Error("LeakyReLU kernel failed");
}
return Status::OK();
}
float alpha_;
};
// 3. 实现形状推导函数
Status LeakyReluShapeFunc(ShapeInferenceContext* context) {
const TensorShape& input_shape = context->GetInputShape(0);
context->SetOutputShape(0, input_shape);
return Status::OK();
}
// 4. 注册算子
void RegisterLeakyReluOp() {
// 注册算子定义
OpRegistry::Global().RegisterOpDef(DefineLeakyReluOp());
// 注册形状推导函数
ShapeFuncRegistry::Global().Register("LeakyRelu", LeakyReluShapeFunc);
// 注册算子内核
OpKernelRegistry::Global().RegisterKernel(
"LeakyRelu",
KernelSignature({DT_FLOAT}, {DT_FLOAT}, "NPU"),
[]() -> std::unique_ptr<OpKernel> {
return std::make_unique<LeakyReluKernel>(0.01f);
}
);
}
// 5. 使用注册宏自动注册
REGISTER_OP(LeakyRelu)
.Input("x: float")
.Output("y: float")
.Attr("alpha: float = 0.01")
.SetShapeFn(LeakyReluShapeFunc);
REGISTER_OP_KERNEL(LeakyRelu, NPU, FLOAT32)
.KernelConstructor([](OpKernelConstruction* ctx) {
float alpha;
ctx->GetAttr("alpha", &alpha);
return new LeakyReluKernel(alpha);
});
3.2 复杂算子开发示例
实现一个Group Normalization算子:
cpp
// Group Normalization定义
class GroupNormOpDef {
public:
static OpDef GetOpDef() {
return OpDef("GroupNorm")
.Input("input", DT_FLOAT, TensorShape::Unknown())
.Input("gamma", DT_FLOAT, TensorShape::Unknown())
.Input("beta", DT_FLOAT, TensorShape::Unknown())
.Output("output", DT_FLOAT, TensorShape::Unknown())
.Output("mean", DT_FLOAT, TensorShape::Unknown())
.Output("variance", DT_FLOAT, TensorShape::Unknown())
.Attr<int>("num_groups", 32)
.Attr<float>("epsilon", 1e-5f)
.Description("Group Normalization operator");
}
};
// Group Normalization内核
class GroupNormKernel : public OpKernelRegistry::OpKernel {
public:
GroupNormKernel(int num_groups, float epsilon)
: num_groups_(num_groups), epsilon_(epsilon) {}
Status ComputeShape(OpKernelContext* context) override {
const Tensor* input = context->GetInput(0);
const TensorShape& input_shape = input->shape();
// 输入形状: [N, C, H, W]
// 输出形状与输入相同
// mean和variance形状: [N, num_groups]
TensorShape output_shape = input_shape;
context->SetOutputShape(0, output_shape);
TensorShape stat_shape({input_shape.dim(0), num_groups_});
context->SetOutputShape(1, stat_shape);
context->SetOutputShape(2, stat_shape);
return Status::OK();
}
Status Compute(OpKernelContext* context) override {
const Tensor* input = context->GetInput(0);
const Tensor* gamma = context->GetInput(1);
const Tensor* beta = context->GetInput(2);
Tensor* output;
Tensor* mean;
Tensor* variance;
// 分配输出
context->AllocateOutput(0, input->shape(), DT_FLOAT);
context->AllocateOutput(1, {input->shape().dim(0), num_groups_}, DT_FLOAT);
context->AllocateOutput(2, {input->shape().dim(0), num_groups_}, DT_FLOAT);
output = context->GetOutput(0);
mean = context->GetOutput(1);
variance = context->GetOutput(2);
// 获取维度
const int64_t N = input->shape().dim(0);
const int64_t C = input->shape().dim(1);
const int64_t H = input->shape().dim(2);
const int64_t W = input->shape().dim(3);
const int64_t group_size = C / num_groups_;
const int64_t HW = H * W;
const int64_t elements_per_group = group_size * HW;
// 执行Group Normalization
const float* input_data = input->data<float>();
float* output_data = output->data<float>();
float* mean_data = mean->data<float>();
float* var_data = variance->data<float>();
const float* gamma_data = gamma->data<float>();
const float* beta_data = beta->data<float>();
// 并行处理每个batch
#pragma omp parallel for collapse(2)
for (int64_t n = 0; n < N; ++n) {
for (int64_t g = 0; g < num_groups_; ++g) {
// 计算当前组的起始和结束通道
int64_t c_start = g * group_size;
int64_t c_end = c_start + group_size;
// 计算均值
float sum = 0.0f;
for (int64_t c = c_start; c < c_end; ++c) {
for (int64_t hw = 0; hw < HW; ++hw) {
int64_t idx = n * C * HW + c * HW + hw;
sum += input_data[idx];
}
}
float group_mean = sum / elements_per_group;
mean_data[n * num_groups_ + g] = group_mean;
// 计算方差
float var_sum = 0.0f;
for (int64_t c = c_start; c < c_end; ++c) {
for (int64_t hw = 0; hw < HW; ++hw) {
int64_t idx = n * C * HW + c * HW + hw;
float diff = input_data[idx] - group_mean;
var_sum += diff * diff;
}
}
float group_var = var_sum / elements_per_group;
var_data[n * num_groups_ + g] = group_var;
// 归一化
float std_dev = std::sqrt(group_var + epsilon_);
for (int64_t c = c_start; c < c_end; ++c) {
for (int64_t hw = 0; hw < HW; ++hw) {
int64_t idx = n * C * HW + c * HW + hw;
int64_t c_idx = c; // gamma/beta索引
float normalized = (input_data[idx] - group_mean) / std_dev;
output_data[idx] = gamma_data[c_idx] * normalized + beta_data[c_idx];
}
}
}
}
return Status::OK();
}
std::string GetKernelSignature() const override {
return "GroupNorm_NPU_FLOAT32_FLOAT32";
}
private:
int num_groups_;
float epsilon_;
};
// 形状推导
Status GroupNormShapeFunc(ShapeInferenceContext* context) {
const TensorShape& input_shape = context->GetInputShape(0);
// 输出形状与输入相同
context->SetOutputShape(0, input_shape);
// 统计量形状: [N, num_groups]
int num_groups = context->GetAttr<int>("num_groups");
TensorShape stat_shape({input_shape.dim(0), num_groups});
context->SetOutputShape(1, stat_shape);
context->SetOutputShape(2, stat_shape);
return Status::OK();
}
// 注册
REGISTER_OP(GroupNorm)
.Input("input: float")
.Input("gamma: float")
.Input("beta: float")
.Output("output: float")
.Output("mean: float")
.Output("variance: float")
.Attr("num_groups: int >= 1")
.Attr("epsilon: float = 1e-5")
.SetShapeFn(GroupNormShapeFunc);
3.3 算子融合开发
实现一个融合算子:Conv2D + BatchNorm + ReLU:
cpp
// 融合算子定义
OpDef DefineConvBNReLUFusedOp() {
return OpDef("ConvBNReLU")
.Input("input", DT_FLOAT)
.Input("filter", DT_FLOAT)
.Input("bias", DT_FLOAT)
.Input("bn_scale", DT_FLOAT)
.Input("bn_offset", DT_FLOAT)
.Input("bn_mean", DT_FLOAT)
.Input("bn_var", DT_FLOAT)
.Output("output", DT_FLOAT)
.Attr<int>("strides", {1, 1})
.Attr<std::vector<int>>("padding", {0, 0})
.Attr<float>("epsilon", 1e-5f)
.Description("Fused Conv2D + BatchNorm + ReLU");
}
// 融合算子内核
class ConvBNReLUFusedKernel : public OpKernelRegistry::OpKernel {
public:
ConvBNReLUFusedKernel(const std::vector<int>& strides,
const std::vector<int>& padding,
float epsilon)
: strides_(strides), padding_(padding), epsilon_(epsilon) {}
Status ComputeShape(OpKernelContext* context) override {
// 使用卷积的形状推导逻辑
return shape_inference::Conv2DShape(context);
}
Status Compute(OpKernelContext* context) override {
const Tensor* input = context->GetInput(0);
const Tensor* filter = context->GetInput(1);
const Tensor* bias = context->GetInput(2);
const Tensor* bn_scale = context->GetInput(3);
const Tensor* bn_offset = context->GetInput(4);
const Tensor* bn_mean = context->GetInput(5);
const Tensor* bn_var = context->GetInput(6);
// 分配输出
Tensor* output;
RETURN_IF_ERROR(context->AllocateOutput(0, ComputeOutputShape(input, filter),
DT_FLOAT));
output = context->GetOutput(0);
// 1. 预计算融合的权重和偏置
// 融合公式: output = ReLU(Conv(x) * BN)
// 其中BN可以融合到卷积权重和偏置中
// new_weight = weight * gamma / sqrt(var + epsilon)
// new_bias = (bias - mean) * gamma / sqrt(var + epsilon) + beta
int64_t out_channels = filter->shape().dim(0);
std::vector<float> fused_weight(out_channels);
std::vector<float> fused_bias(out_channels);
const float* weight_data = filter->data<float>();
const float* bias_data = bias->data<float>();
const float* scale_data = bn_scale->data<float>();
const float* offset_data = bn_offset->data<float>();
const float* mean_data = bn_mean->data<float>();
const float* var_data = bn_var->data<float>();
for (int64_t oc = 0; oc < out_channels; ++oc) {
float scale = scale_data[oc] / std::sqrt(var_data[oc] + epsilon_);
fused_weight[oc] = scale;
fused_bias[oc] = (bias_data[oc] - mean_data[oc]) * scale + offset_data[oc];
}
// 2. 执行融合卷积(一次性完成卷积、BN和ReLU)
return ComputeFusedConv(input, filter, fused_weight, fused_bias,
output, context);
}
std::string GetKernelSignature() const override {
return "ConvBNReLU_NPU_FLOAT32_FLOAT32";
}
private:
Status ComputeFusedConv(const Tensor* input, const Tensor* filter,
const std::vector<float>& fused_scale,
const std::vector<float>& fused_bias,
Tensor* output, OpKernelContext* context) {
// 调用NPU融合算子API
aclnnStatus ret = aclnnConvBnRelu(
(aclTensor*)input->device_ptr(),
(aclTensor*)filter->device_ptr(),
fused_scale.data(),
fused_bias.data(),
(aclTensor*)output->device_ptr(),
strides_.data(),
padding_.data(),
context->GetStream().GetHandle(),
context->GetWorkspace());
return ret == ACLNN_SUCCESS ? Status::OK() :
Status::Error("Fused conv execution failed");
}
TensorShape ComputeOutputShape(const Tensor* input, const Tensor* filter) {
// 简化版本
return input->shape();
}
std::vector<int> strides_;
std::vector<int> padding_;
float epsilon_;
};
// 注册融合算子
REGISTER_OP(ConvBNReLU)
.Input("input: T")
.Input("filter: T")
.Input("bias: T")
.Input("bn_scale: T")
.Input("bn_offset: T")
.Input("bn_mean: T")
.Input("bn_var: T")
.Output("output: T")
.Attr("T: {float, float16} = DT_FLOAT")
.Attr("strides: list(int) = [1, 1]")
.Attr("padding: list(int) = [0, 0]")
.Attr("epsilon: float = 1e-5")
.SetShapeFn(shape_inference::Conv2DShape);
四、高级特性
4.1 多后端支持
cpp
// 多后端内核注册
template<typename Device>
class GenericAddKernel : public OpKernelRegistry::OpKernel {
public:
Status Compute(OpKernelContext* context) override {
const Tensor* a = context->GetInput(0);
const Tensor* b = context->GetInput(1);
Tensor* c;
RETURN_IF_ERROR(context->AllocateOutput(0, a->shape(), a->dtype()));
c = context->GetOutput(0);
return Device::ComputeAdd(a, b, c);
}
};
// CPU特化
template<>
class GenericAddKernel<CPUDevice> : public OpKernelRegistry::OpKernel {
public:
Status Compute(OpKernelContext* context) override {
// CPU实现
auto* a = context->GetInput(0)->data<float>();
auto* b = context->GetInput(1)->data<float>();
auto* c = context->GetOutput(0)->data<float>();
int64_t n = context->GetInput(0)->shape().num_elements();
#pragma omp parallel for
for (int64_t i = 0; i < n; ++i) {
c[i] = a[i] + b[i];
}
return Status::OK();
}
};
// NPU特化
template<>
class GenericAddKernel<NPUDevice> : public OpKernelRegistry::OpKernel {
public:
Status Compute(OpKernelContext* context) override {
// NPU实现
return aclnnAdd(context->GetInput(0), context->GetInput(1),
context->GetOutput(0), context->GetStream());
}
};
// 注册不同后端
REGISTER_OP_KERNEL(Add, CPU, FLOAT32).Kernel(GenericAddKernel<CPUDevice>);
REGISTER_OP_KERNEL(Add, NPU, FLOAT32).Kernel(GenericAddKernel<NPUDevice>);
4.2 自动微分支持
cpp
// 为算子添加梯度计算
class LeakyReluGradientOp : public OpKernelRegistry::OpKernel {
public:
Status Compute(OpKernelContext* context) override {
const Tensor* grad_output = context->GetInput(0);
const Tensor* input = context->GetInput(1);
Tensor* grad_input;
RETURN_IF_ERROR(context->AllocateOutput(0, input->shape(),
input->dtype()));
grad_input = context->GetOutput(0);
float alpha = context->GetAttr<float>("alpha");
const float* grad_data = grad_output->data<float>();
const float* input_data = input->data<float>();
float* out_data = grad_input->data<float>();
int64_t n = input->shape().num_elements();
for (int64_t i = 0; i < n; ++i) {
// dy/dx = alpha if x < 0 else 1
out_data[i] = input_data[i] < 0 ?
grad_data[i] * alpha : grad_data[i];
}
return Status::OK();
}
};
// 注册梯度算子
REGISTER_OP(LeakyReluGrad)
.Input("grad_output: T")
.Input("input: T")
.Output("grad_input: T")
.Attr("T: {float, float16}")
.Attr("alpha: float = 0.01");
REGISTER_OP_GRADIENT(LeakyRelu, LeakyReluGradientOp);
4.3 动态形状支持
cpp
// 处理动态形状的算子
class DynamicShapeExampleOp : public OpKernelRegistry::OpKernel {
public:
Status ComputeShape(OpKernelContext* context) override {
const TensorShape& input_shape = context->GetInputShape(0);
// 即使输入形状包含未知维度,仍可推导输出形状模式
TensorShape output_shape;
if (input_shape.IsUnknown()) {
output_shape = TensorShape::Unknown();
} else {
// 第一个维度可以动态变化
output_shape = TensorShape({TensorShape::kUnknownDim,
input_shape.dim(1),
input_shape.dim(2) * 2});
}
context->SetOutputShape(0, output_shape);
return Status::OK();
}
Status Compute(OpKernelContext* context) override {
// 在运行时确定实际形状
const Tensor* input = context->GetInput(0);
const TensorShape& actual_shape = input->shape();
// 根据实际形状分配输出
TensorShape output_shape({actual_shape.dim(0),
actual_shape.dim(1),
actual_shape.dim(2) * 2});
Tensor* output;
RETURN_IF_ERROR(context->AllocateOutput(0, output_shape,
input->dtype()));
output = context->GetOutput(0);
// 执行计算...
return Status::OK();
}
};
// 使用形状推导规则
REGISTER_OP(DynamicShapeExample)
.Input("input: T")
.Output("output: T")
.Attr("T: {float}")
.SetShapeFn([](ShapeInferenceContext* ctx) {
// 定义形状推导规则
ctx->SetOutputShape(0, ctx->GetInputShape(0));
return Status::OK();
});
五、总结
opbase框架提供了完整的算子开发基础设施,通过算子定义、注册、形状推导和执行等层次的抽象,使得开发者可以专注于算子逻辑本身。掌握opbase的使用,对于深度学习框架开发和自定义算子实现都至关重要。
相关链接:
- CANN组织链接:https://atomgit.com/cann
- opbase仓库链接:https://atomgit.com/cann/opbase