大数据-275 Spark MLib - 基础介绍 机器学习算法 集成学习 随机森林 Bagging Boosting

点一下关注吧!!!非常感谢!!持续更新!!!

大模型篇章已经开始!

  • 目前已经更新到了第 22 篇:大语言模型 22 - MCP 自动操作 Figma+Cursor 自动设计原型

Java篇开始了!

  • MyBatis 更新完毕
  • 目前开始更新 Spring,一起深入浅出!

目前已经更新到了:

  • Hadoop(已更完)
  • HDFS(已更完)
  • MapReduce(已更完)
  • Hive(已更完)
  • Flume(已更完)
  • Sqoop(已更完)
  • Zookeeper(已更完)
  • HBase(已更完)
  • Redis (已更完)
  • Kafka(已更完)
  • Spark(已更完)
  • Flink(已更完)
  • ClickHouse(已更完)
  • Kudu(已更完)
  • Druid(已更完)
  • Kylin(已更完)
  • Elasticsearch(已更完)
  • DataX(已更完)
  • Tez(已更完)
  • 数据挖掘(已更完)
  • Prometheus(已更完)
  • Grafana(已更完)
  • 离线数仓(已更完)
  • 实时数仓(正在更新...)
  • Spark MLib (正在更新...)

集成学习

不指望单个弱模型"包打天下",而是构造一簇互补的基学习器并让它们投票/加权,用"群体智慧"提升泛化能力、稳定性和鲁棒性。

基本定义

集成学习通过建立几个模型来解决单一预测问题,它的工作原理是生成多个分类器/模型,各自独立的学习和做出预测,这些预测最后结合成组合预测,因为优于任何一个单分类的做出预测。

集成学习分类

● 任务一:如何优化训练数据 - 主要用于解决欠拟合问题

● 任务二:如何提升泛化性能 - 主要用于解决过拟合问题

只要单分类器的表现不太差,集成学习的结果总是要好于单分类器的。

Bagging

集成原理

目标

把下面的圈和方块进行分类

采集不同的数据集

训练分类器

平权投票

获取最终结果

随机森林

在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由所有树输出的类别的众数而定。

随机森林 = Bagging + 决策树

例如,如果你训练了5个树,其中有4个树的结果是True,1个树的结果是False,那么最终投票的结果就是True,随机森林构造过程中的关键步骤(M表示特征数目):

● 一次随机选出部分样本,有放回的抽样,重复N次(有可能出现重复的样本)

● 随机去选出 m 个特征,m << M,建立决策树

Boosting

基本概念

随着学习的积累从弱到强,简而言之:每新加入一个弱学习器,整体能力就会得到提升

代表算法:Adaboost、GBDT、XGBoost、LightGBM

Spark MLlib 的 GBT 相当于 "纯原生 Java/Scala 实现的 GBDT",功能和速度距现代竞赛级框架(XGBoost / LightGBM / CatBoost)仍有差距。工业界常用以下两条路线把先进算法接进 Spark Pipeline:

  • XGBoost4J‑Spark:将每个 XGBoost worker 嵌入 Spark executor,天然支持 GPU / CPU 分布式;API 兼容 ML Pipeline,可与 VectorAssembler、ParamGridBuilder 协同工作。
  • LightGBM‑Spark(microsoft/synapseml):基于 LightGBM 的梯度直方、Leaf‑wise growth,训练速度较快,支持类别特征原生处理与分布式训练。

使用方式大体一致: 把 XGBoostClassifier 或 LightGBMRegressor 替换到 Pipeline 里,并确保 依赖 JAR 与 native lib 在所有 executor 可见。常见踩坑点:

  • 内存分配:XGBoost 需要 executor 拥有足够的 off‑heap;通过 spark.executor.memoryOverhead 和 spark.executor.cores 调整。
  • 数据格式:必须把特征向量转成 Dense 或 Sparse Vector; 并避免 StringIndexer 将类别特征过度 one‑hot,使维度爆炸。
  • GPU 调度:需要 spark.task.resource.gpu.amount=1 并在 YARN/K8s 上配置 spark.executor.resource.gpu.amount。

实现过程

训练第一个学习器

调整数据分布

训练第二个学习器

再次调整数据分布

学习器训练及数据分布调整

整体过程

相关推荐
从孑开始9 分钟前
ManySpeech.MoonshineAsr 使用指南
人工智能·ai·c#·.net·私有化部署·语音识别·onnx·asr·moonshine
im_AMBER21 分钟前
算法笔记 05
笔记·算法·哈希算法
夏鹏今天学习了吗27 分钟前
【LeetCode热题100(46/100)】从前序与中序遍历序列构造二叉树
算法·leetcode·职场和发展
吃着火锅x唱着歌27 分钟前
LeetCode 2389.和有限的最长子序列
算法·leetcode·职场和发展
悟乙己38 分钟前
MLops | 基于AWS Lambda 架构构建强大的机器学习(ML)血缘关系
机器学习·架构·aws
嶔某40 分钟前
二叉树的前中后序遍历(迭代)
算法
WWZZ20251 小时前
快速上手大模型:机器学习2(一元线性回归、代价函数、梯度下降法)
人工智能·算法·机器学习·计算机视觉·机器人·大模型·slam
孤狼灬笑1 小时前
深度学习经典分类(算法分析与案例)
rnn·深度学习·算法·cnn·生成模型·fnn
dragoooon341 小时前
[优选算法专题四.前缀和——NO.26二维前缀和]
算法
言之。2 小时前
大模型嵌入 vs ES:语义搜索与关键字搜索
大数据·elasticsearch·搜索引擎