时序预测 | Matlab实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络时间序列预测

时序预测 | Matlab实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络时间序列预测

目录

    • [时序预测 | Matlab实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络时间序列预测](#时序预测 | Matlab实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络时间序列预测)

预测效果











基本介绍

MATLAB实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络时间序列预测(完整源码和数据)

1.MATLAB实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络时间序列预测(完整源码和数据)

2.输入输出单个变量,时间序列预测预测;

3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;

4.麻雀算法优化参数为:学习率,隐含层节点,正则化参数;

5.excel数据,方便替换,运行环境2020及以上。

程序设计

  • 完整源码和数据获取方式:私信博主回复MATLAB实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络时间序列预测
clike 复制代码
%%  获取最优种群
   for j = 1 : SearchAgents
       if(fitness_new(j) < GBestF)
          GBestF = fitness_new(j);
          GBestX = X_new(j, :);
       end
   end
   
%%  更新种群和适应度值
   pop_new = X_new;
   fitness = fitness_new;

%%  更新种群 
   [fitness, index] = sort(fitness);
   for j = 1 : SearchAgents
      pop_new(j, :) = pop_new(index(j), :);
   end

%%  得到优化曲线
   curve(i) = GBestF;
   avcurve(i) = sum(curve) / length(curve);
end

%%  得到最优值
Best_pos = GBestX;
Best_score = curve(end);

%%  得到最优参数
NumOfUnits       =abs(round( Best_pos(1,3)));       % 最佳神经元个数
InitialLearnRate =  Best_pos(1,2) ;% 最佳初始学习率
L2Regularization = Best_pos(1,1); % 最佳L2正则化系数
% 
inputSize = k;
outputSize = 1;  %数据输出y的维度  
%  参数设置
opts = trainingOptions('adam', ...                    % 优化算法Adam
    'MaxEpochs', 20, ...                              % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', InitialLearnRate, ...         % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod', 6, ...                     % 训练次后开始调整学习率
    'LearnRateDropFactor',0.2, ...                    % 学习率调整因子
    'L2Regularization', L2Regularization, ...         % 正则化参数
    'ExecutionEnvironment', 'gpu',...                 % 训练环境
    'Verbose', 0, ...                                 % 关闭优化过程
    'SequenceLength',1,...
    'MiniBatchSize',10,...
    'Plots', 'training-progress');                    % 画出曲线

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501

[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
机器学习之心8 天前
时序预测 | 改进图卷积+informer时间序列预测,pytorch架构
人工智能·pytorch·python·时间序列预测·informer·改进图卷积
矩阵猫咪16 天前
【深度学习】时间序列预测、分类、异常检测、概率预测项目实战案例
人工智能·pytorch·深度学习·神经网络·机器学习·transformer·时间序列预测
机器学习之心17 天前
时序预测 | Matlab基于TSA-LSTM-Attention被囊群优化算法优化长短期记忆网络融合注意力机制多变量多步时间序列预测
时间序列预测·lstm-attention·融合注意力机制·多变量多步·tsa-lstm·被囊群优化算法优化
阡之尘埃20 天前
Python数据分析案例62——基于MAGU-LSTM的时间序列预测(记忆增强门控单元)
人工智能·python·深度学习·机器学习·数据分析·lstm·时间序列预测
Cyril_KI1 个月前
PyTorch搭建GNN(GCN、GraphSAGE和GAT)实现多节点、单节点内多变量输入多变量输出时空预测
pytorch·时间序列预测·gnn·时空预测
机器学习之心2 个月前
时序预测 | Matlab实现GA-CNN遗传算法优化卷积神经网络时间序列预测
时间序列预测·ga-cnn·遗传算法优化卷积神经网络
机器学习之心2 个月前
时序预测 | Matlab实现PSO-CNN粒子群优化卷积神经网络时间序列预测
matlab·cnn·时间序列预测·pso-cnn·粒子群优化卷积神经网络
机器学习之心2 个月前
多维时序 | Matlab基于TCN-Transformer+LSTM双输入神经网络时间序列预测
神经网络·matlab·lstm·transformer·时间序列预测·tcn-transformer
简简单单做算法3 个月前
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
matlab·cnn-lstm·贝叶斯优化·数据分类·bo-cnn-lstm
少喝冰美式3 个月前
时间序列预测+NLP大模型新作:为时序预测自动生成隐式Prompt
人工智能·自然语言处理·llm·nlp·prompt·时间序列预测·ai大模型