分类预测 | MATLAB实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络数据分类预测

分类预测 | MATLAB实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络数据分类预测

目录

    • [分类预测 | MATLAB实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络数据分类预测](#分类预测 | MATLAB实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络数据分类预测)

分类效果






基本描述

1.MATLAB实现SSA-CNN-LSTM数据分类预测,运行环境Matlab2021b及以上;

2.基于麻雀优化算法(SSA)、卷积神经网络(CNN)和长短期记忆网络(LSTM)的数据分类预测程序;

3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;SSA优化算法优化学习率、卷积核大小、神经元个数,这3个关键参数,以测试集精度最高为目标函数

程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;

4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行。

5.适用领域:适用于各种数据分类场景,如滚动轴承故障、变压器油气故障、电力系统输电线路故障区域、绝缘子、配网、电能质量扰动,等领域的识别、诊断和分类。

使用便捷:直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络数据分类预测
clike 复制代码
%%  优化算法参数设置
SearchAgents_no = 8;                   % 数量
Max_iteration = 5;                    % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-3,10 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30,1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)

fitness = @(x)fical(x,num_dim,num_class,p_train,t_train,T_train);

[Best_score,Best_pos,curve]=SSA(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness)
Best_pos(1, 2) = round(Best_pos(1, 2));   
best_hd  = Best_pos(1, 2); % 最佳隐藏层节点数
best_lr= Best_pos(1, 1);% 最佳初始学习率
best_l2 = Best_pos(1, 3);% 最佳L2正则化系数
 
%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [
    sequenceInputLayer([num_dim, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[num_dim, 1, 1]
    sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [
    convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1],16个特征图
    reluLayer("Name", "relu_1")                                          % Relu 激活层

lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中

tempLayers = [
    sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层
    flattenLayer("Name", "flatten")                                  % 网络铺平层
    bilstmLayer(best_hd, "Name", "bilstm", "OutputMode","last")              % BiLSTM层
    fullyConnectedLayer(num_class, "Name", "fc")                     % 全连接层
    softmaxLayer("Name", "softmax")                                  % softmax激活层
    classificationLayer("Name", "classification")];                  % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); 

%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法
    'MaxEpochs', 500,...                 % 最大训练次数 
    'InitialLearnRate', best_lr,...          % 初始学习率为0.001
    'L2Regularization', best_l2,...         % L2正则化参数
    'LearnRateSchedule', 'piecewise',...  % 学习率下降
    'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1
    'Shuffle', 'every-epoch',...          % 每次训练打乱数据集
    'ValidationPatience', Inf,...         % 关闭验证
    'Plots', 'training-progress',...      % 画出曲线
    'Verbose', false);

%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502

[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
简简单单做算法2 个月前
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
matlab·cnn-lstm·贝叶斯优化·数据分类·bo-cnn-lstm
机器学习之心3 个月前
靓图!多点创新!CEEMDAN-Kmeans-VMD-CNN-LSTM-Attention双重分解+卷积长短期+注意力多元时间序列预测
attention·cnn-lstm·ceemdan·双重分解·kmeans-vmd·卷积长短期记忆·注意力多元时间序列预测
机器学习之心5 个月前
Adaboost集成学习 | Matlab实现基于CNN-LSTM-Adaboost集成学习时间序列预测(股票价格预测)
adaboost·集成学习·cnn-lstm·股票价格预测
简简单单做算法5 个月前
基于PSO粒子群优化的CNN-LSTM的时间序列回归预测matlab仿真
人工智能·cnn·lstm·cnn-lstm·时间序列预测·pso粒子群优化
简简单单做算法5 个月前
基于GA遗传优化的CNN-LSTM的时间序列回归预测matlab仿真
matlab·cnn·lstm·cnn-lstm·ga遗传优化·时间序列回归预测·ga-cnn-lstm
机器学习之心6 个月前
分类预测 | Matlab实现CNN-LSTM-SAM-Attention卷积长短期记忆神经网络融合空间注意力机制的数据分类预测
卷积长短期记忆神经网络·数据分类预测·sam-attention·cnn-lstm-sam·融合空间注意力机制
机器学习之心6 个月前
分类预测 | Matlab实现CNN-BiLSTM-SAM-Attention卷积双向长短期记忆神经网络融合空间注意力机制的数据分类预测
卷积双向长短期记忆神经网络·数据分类预测·sam-attention·cnn-bilstm-sam·融合空间注意力机制
机器学习之心7 个月前
分类预测 | Matlab实现WOA-LSSVM鲸鱼算法优化最小二乘支持向量机数据分类预测
鲸鱼算法优化·数据分类预测·最小二乘支持向量机·woa-lssvm
机器学习之心7 个月前
分类预测 | Matlab实现PSO-LSSVM粒子群算法优化最小二乘支持向量机数据分类预测
数据分类预测·pso-lssvm·最小二乘支持向量机·粒子群算法优化
机器学习之心7 个月前
分类预测 | Matlab实现DRN深度残差网络数据分类预测
数据分类预测·drn·深度残差网络