回归预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测

回归预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测

目录

    • [回归预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测](#回归预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测)

预测效果











基本介绍

MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测(完整源码和数据)

1.MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测(完整源码和数据)

2.输入多个特征,输出单个变量,多输入单输出回归预测;

3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;

4.蛇群算法优化参数为:学习率,隐含层节点,正则化参数;

5.excel数据,方便替换,运行环境2020及以上。

模型描述

SO-CNN-LSTM蛇群算法是一种用于优化卷积长短期记忆神经网络的算法,用于多输入单输出的回归预测问题。下面我会一步一步地解释这个算法的各个组成部分。

首先,卷积长短期记忆神经网络(Convolutional LSTM)。它是一种结合了卷积神经网络和长短期记忆神经网络的混合模型,能够处理序列数据和图像数据。在卷积LSTM中,卷积层用于提取输入数据的特征,LSTM层则用于对这些特征进行时间依赖性建模,以便对序列数据进行建模。

SO-CNN-LSTM蛇群算法。该算法是一种采用蛇群算法进行优化的算法,它可以帮助我们在训练过程中找到最优的模型参数。在该算法中,我们将卷积LSTM网络的参数作为待优化的变量,使用蛇群算法进行参数搜索。蛇群算法是一种模拟蛇群觅食行为的启发式算法,能够在搜索空间中高效地寻找最优解。多输入单输出回归预测问题。这是一种将多个输入数据映射到一个输出数据的问题。在这种情况下,我们可以使用卷积LSTM网络来处理每个输入数据,然后将它们的结果合并在一起,得到最终的输出结果。在训练过程中,我们可以使用已知的输入和输出数据来训练模型,以便它能够对输入数据进行准确的预测。总的来说,SO-CNN-LSTM蛇群算法是一种用于优化卷积长短期记忆神经网络的算法,用于多输入单输出的回归预测问题。它能够帮助我们在训练过程中找到最优的模型参数,以便我们可以对输入数据进行准确的预测。

程序设计

clike 复制代码
%%  获取最优种群
   for j = 1 : SearchAgents
       if(fitness_new(j) < GBestF)
          GBestF = fitness_new(j);
          GBestX = X_new(j, :);
       end
   end
   
%%  更新种群和适应度值
   pop_new = X_new;
   fitness = fitness_new;

%%  更新种群 
   [fitness, index] = sort(fitness);
   for j = 1 : SearchAgents
      pop_new(j, :) = pop_new(index(j), :);
   end

%%  得到优化曲线
   curve(i) = GBestF;
   avcurve(i) = sum(curve) / length(curve);
end

%%  得到最优值
Best_pos = GBestX;
Best_score = curve(end);

%%  得到最优参数
NumOfUnits       =abs(round( Best_pos(1,3)));       % 最佳神经元个数
InitialLearnRate =  Best_pos(1,2) ;% 最佳初始学习率
L2Regularization = Best_pos(1,1); % 最佳L2正则化系数
% 
inputSize = k;
outputSize = 1;  %数据输出y的维度  
%  参数设置
opts = trainingOptions('adam', ...                    % 优化算法Adam
    'MaxEpochs', 20, ...                              % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', InitialLearnRate, ...         % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod', 6, ...                     % 训练次后开始调整学习率
    'LearnRateDropFactor',0.2, ...                    % 学习率调整因子
    'L2Regularization', L2Regularization, ...         % 正则化参数
    'ExecutionEnvironment', 'gpu',...                 % 训练环境
    'Verbose', 0, ...                                 % 关闭优化过程
    'SequenceLength',1,...
    'MiniBatchSize',10,...
    'Plots', 'training-progress');                    % 画出曲线

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501

[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
机器学习之心2 天前
回归预测 | MATLAB基于TCN-BiGRU时间卷积神经网络结合双向门控循环单元多输入单输出回归预测
matlab·回归·多输入单输出回归预测·cnn·tcn-bigru·时间卷积双向门控循环单元
机器学习之心16 天前
回归预测 | MATLAB实现CNN-SVM多输入单输出回归预测
matlab·回归·多输入单输出回归预测·cnn·cnn-svm
机器学习之心21 天前
回归预测 | MATLAB实现CNN-BiLSTM-Attention多输入单输出回归预测
回归·多输入单输出回归预测·attention·cnn-bilstm
机器学习之心2 个月前
顶刊算法 | 鱼鹰算法OOA-BiTCN-BiGRU-Attention多输入单输出回归预测(Maltab)
人工智能·深度学习·回归·多输入单输出回归预测·attention·ooa-bitcn-bigru
机器学习之心2 个月前
Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型多变量回归预测
多输入单输出回归预测·cnn·gru·transformer·cnn-gru
机器学习之心3 个月前
粒子群优化双向深度学习!PSO-BiTCN-BiGRU-Attention多输入单输出回归预测
人工智能·深度学习·回归·多输入单输出回归预测·pso-bitcn-bigru
机器学习之心3 个月前
回归预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入单输出回归预测
随机森林·matlab·回归·多输入单输出回归预测·rf-adaboost
机器学习之心3 个月前
回归预测 | Matlab基于SABO-SVR减法平均算法优化支持向量机的数据多输入单输出回归预测
支持向量机·matlab·回归·多输入单输出回归预测·减法平均算法·sabo-svr
机器学习之心4 个月前
回归预测 | Matlab基于POA-SVR鹈鹕算法优化支持向量机的数据多输入单输出回归预测
多输入单输出回归预测·poa-svr·鹈鹕算法优化支持向量机
机器学习之心5 个月前
回归预测 | Matlab实现BES-ESN秃鹰搜索算法优化回声状态网络多输入单输出回归预测
matlab·回归·多输入单输出回归预测·回声状态网络·bes-esn·秃鹰搜索算法优化