论文阅读笔记——FLOW MATCHING FOR GENERATIVE MODELINGFlow Matching 论文 扩散模型:根据中心极限定理,对原始图像不断加高斯噪声,最终将原始信号破坏为近似的标准正态分布。这其中每一步都构造为条件高斯分布,形成离散的马尔科夫链。再通过逐步去噪得到原始图像。 Flow matching 采取直接将已知分布(如白噪声)转换为真实数据分布来生成数据,并且 Flow 是基于 Normalizing Flow,故而是可微双射。生成过程中变化的概率密度构成一个集合,称为概率密度路径 p t p_t pt ,T 为路径长度。初始数据 x 0 ∼ p 0 ( x