pygplates专栏——Reconstruc features——reconstruct regular features

pygplates专栏------Reconstruc features------reconstruct regular features

Reconstruct regular features

这个例子展示了几个不同的场景,涉及到重建地质时代的常见特征。

导出重构特征到文件

在这个例子中,我们重建常规特征并将结果导出到Shapefile。

示例代码

bash 复制代码
import pygplates

# 加载板块运动模型
rotation_model = pygplates.RotationModel("Muller2019-Young2019-Cao2020_CombinedRotations.rot")
# 加载一些features
features = pygplates.FeatureCollection("Global_EarthByte_GPlates_PresentDay_Coastlines.gpmlz")
# 重建的地质时间
reconstruction_time = 50
# 输出的文件
export_filename = "6-Exported_reconstructed_features_to_a_file_reconstructed_{0}Ma.shp".format(reconstruction_time)
# 重建
pygplates.reconstruct(features, rotation_model, export_filename, reconstruction_time)

详解

首先加载板块运动模型(pygplates.RotationModel)

bash 复制代码
rotation_model = pygplates.RotationModel('rotations.rot')

加载需要重建的特征(pygplates.FeatureCollection)

bash 复制代码
features = pygplates.FeatureCollection('features.gpml')

设置重建时间

bash 复制代码
reconstruction_time = 50

最后完成重建结果并保存

bash 复制代码
pygplates.reconstruct(features, rotation_model, export_filename, reconstruction_time)

计算重建距离

示例代码

bash 复制代码
import pygplates

# 返回几何要素(点/多点/折线/多边形)质心的函数。
def get_geometry_centroid(geometry):
    # 检查几何要素是否为多边形
    try:
        return geometry.get_interior_centroid()
    except AttributeError:
        # 不是多边形,继续
        pass
    # 检查几何要素是否为多线条或多点
    try:
        return geometry.get_centroid()
    except AttributeError:
        pass
    # 仅剩点
    return geometry
# 加载板块运动模型
rotation_model = pygplates.RotationModel("Muller2019-Young2019-Cao2020_CombinedRotations.rot")
# 加载一些特征
features = pygplates.FeatureCollection("2-output_points.gpml")
# 重建地质时间
reconstruction_time = 50
# 重建
reconstructed_feature_geometries = []
pygplates.reconstruct(features, rotation_model, reconstructed_feature_geometries, reconstruction_time)
# 遍历所有重建结果
for reconstructed_feature_geometry in reconstructed_feature_geometries:
    # 计算距离:今时今日几何要素的质点和重建后的质点
    distance_reconstructed = pygplates.GeometryOnSphere.distance(
        get_geometry_centroid(reconstructed_feature_geometry.get_present_day_geometry()),
        get_geometry_centroid(reconstructed_feature_geometry.get_reconstructed_geometry())
    )
    # 将弧度转换为公里
    distance_reconstructed_in_kms = distance_reconstructed * pygplates.Earth.mean_radius_in_kms
    # 输出相关特征名称和板块ID,以及重建的距离
    print("Feature: %s" % reconstructed_feature_geometry.get_feature().get_name())
    print("  plate ID: %d" % reconstructed_feature_geometry.get_feature().get_reconstruction_plate_id())
    print("  distance reconstructed: %f Kms" % distance_reconstructed_in_kms)

详解

为了某个功能,pygplates定义了许多相关的函数

如果,我们可以忽略掉几何要素是否为pygplates.PointOnSphere,pygplates.MultiPointOnSphere,pygplates.PolyineOnSphere或pygplates.PolygonOnSphere。每种几何要素类型需要不同的方法获取质点。

因此我们首先尝试pygplates.PolygonOnSphere.get_interior_centroid(),然后尝试get_centroid(),最后几何要素点就是它本身的质点。

bash 复制代码
def get_geometry_centroid(geometry):
    try:
        return geometry.get_interior_centroid()
    except AttributeError:
        pass
    try:
        return geometry.get_centroid()
    except AttributeError:
        pass
    return geometry

使用pygplates.GeometryOnSphere.distance()方法来计算两个质点之间的最短距离,然后使用pygplates.Earth将其转换为公里数。

bash 复制代码
distance_reconstructed = pygplates.GeometryOnSphere.distance(
    get_geometry_centroid(reconstructed_feature_geometry.get_present_day_geometry()),
    get_geometry_centroid(reconstructed_feature_geometry.get_reconstructed_geometry()))
distance_reconstructed_in_kms = distance_reconstructed * pygplates.Earth.mean_radius_in_kms
相关推荐
Learn-Python20 小时前
MongoDB-only方法
python·sql
小途软件21 小时前
用于机器人电池电量预测的Sarsa强化学习混合集成方法
java·人工智能·pytorch·python·深度学习·语言模型
扫地的小何尚21 小时前
NVIDIA RTX PC开源AI工具升级:加速LLM和扩散模型的性能革命
人工智能·python·算法·开源·nvidia·1024程序员节
wanglei2007081 天前
生产者消费者
开发语言·python
清水白石0081 天前
《从零到进阶:Pydantic v1 与 v2 的核心差异与零成本校验实现原理》
数据库·python
昵称已被吞噬~‘(*@﹏@*)’~1 天前
【RL+空战】学习记录03:基于JSBSim构造简易空空导弹模型,并结合python接口调用测试
开发语言·人工智能·python·学习·深度强化学习·jsbsim·空战
2501_941877981 天前
从配置热更新到运行时自适应的互联网工程语法演进与多语言实践随笔分享
开发语言·前端·python
酩酊仙人1 天前
fastmcp构建mcp server和client
python·ai·mcp
且去填词1 天前
DeepSeek API 深度解析:从流式输出、Function Calling 到构建拥有“手脚”的 AI 应用
人工智能·python·语言模型·llm·agent·deepseek
rgeshfgreh1 天前
Python条件与循环实战指南
python